라틴어 문장 검색

Primus enim vi et potentia quadratus, id est unitas, unum habet in latere;
(보이티우스, De Arithmetica, Liber secundus, De eorum lateribus 1:2)
secundus vero, qui actu primus est, id est quattuor, duobus per latera positis continetur;
(보이티우스, De Arithmetica, Liber secundus, De eorum lateribus 1:3)
tertius vero, id est viiij, qui secundus est opere, tribus in latere positis adgregatur.
(보이티우스, De Arithmetica, Liber secundus, De eorum lateribus 1:4)
Est etiam in his haec naturae subtilitas et inmutabilis ordinatio, quod tot unitates unusquisque quadratorum retinebit in latere, quanti fuerint numeri ad coniunctionem propriam congregati.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:8)
Et in novenario, quoniam tribus numeris procreatur, latus ternario continetur, atque idem in aliis videre licet.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:10)
Cunctis scilicet lateribus aequali demensione dispositis.
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:2)
Sunt autem hi j v xij xxij xxxv lj lxx. Eodem quoque modo eorum latera succrescunt.
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:3)
tertius vero, id est xij, tribus in latus auctus est;
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:5)
quartus xxij quattuor numerorum in latere quantitate distenditur;
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:6)
Secundum talia quoque augmenta exagonorum vel eptagonorum vel octogonorum vel novem laterum figura vel x quotlibet aliorum conpetenti progressione conficitur.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:5)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
Si huic igitur triangulo per tres angulos erigantur lineae et ad unum punctum convertantur, quod est d, ita ut d punctum non sit in plano, sed pendens, illae scilicet lineae ad ipsum erectae verticem et quodammodo cacumen d facient et erit basis a b c unum triangulum, per latera vero tria triangula, id est unum triangulum a d b, aliud vero b d c, tertium c d a.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:6)
Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
et quantoscunque angulos habuerit figura, super quam pyramis residet, tot ipsa per latera triangulis continetur, ut ex subiectis descriptionibus palam est.
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:2)
At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)

SEARCH

MENU NAVIGATION