라틴어 문장 검색

& inde datur punctum B per quod Hyperbola Asymptotis CH, CD describi debet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 9:3)
ut & spatium ABGD, quod corpus incipiendo motum suum cum velocitate illa AB, tempore quovis AD, in Medio similari resistente describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 9:4)
Corpora Sphaerica homogenea & aequalia, resistentiis in duplicata ratione velocitatum impedita, & solis viribus insitis incitata, temporibus quae sunt reciproce ut velocitates sub initio, describunt semper aequalia spatia, & amittunt partes velocitatum proportionales totis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 12:1)
Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolae) CA ad CD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:1)
& componendo, ita Ca ad Cd. Ergo areae ABba, DEed, hoc est spatia descripta aequantur inter se, & velocitates primae AB, DE sunt ultimis ab, de, & propterea (dividendo) partibus etiam suis amissis AB - ab, DE - de proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:2)
Corpora Sphaerica quibus resistitur in duplicata ratione velocitatum, temporibus quae sunt ut motus primi directe & resistentiae primae inverse, amittent partes motuum proportionales totis, & spatia describent temporibus istis in velocitates primas ductis proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 15:1)
Et ob datam velocitatum rationem, describent semper spatia quae sunt ut velocitates primae & tempora conjunctim. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 16:7)
cum velocitatibus moti, describendo spatia diametris suis proportionalia, amittent partes motuum proportionales totis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 17:3)
cum velocitatibus moti, describendo spatia in sesquialtera ratione diametrorum inverse, amittent partes motuum proportionales totis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 18:4)
Igitur describendo spatia ipsis D^{3 - n} & E^{3 - n} proportionalia, retinebunt velocitates in eadem ratione ad invicem ac sub initio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 19:7)
Quod si Globi non sint homogenei, spatium a Globo densiore descriptum augeri debet in ratione densitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 20:2)
Motus enim sub pari velocitate major est in ratione densitatis, & tempus (per hanc Propositionem) augetur in ratione motus directe, ac spatium descriptum in ratione temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 20:3)
Si corpus in Medio uniformi, Gravitate uniformiter agente, recta ascendat vel descendat, & spatium totum descriptum distinguatur in partes aequales, inq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 38:1)
& centro C Asymptotis rectangulis CA, CH describatur Hyperbola quaevis BNS, erectis perpendiculis AB, KN, LO, PR, QS occurrens in B, N, O, R, S. Quoniam AK est ut APq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:6)
Componitur igitur area tota Hyperbolica ABOL ex particulis KNOL velocitati AP semper proportionalibus, & propterea spatio velocitate ista descripto proportionalis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:14)

SEARCH

MENU NAVIGATION