라틴어 문장 검색

quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C aequalis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 14:1)
erunt (ex aequo) areae totae ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob aequalitatem velocitatum) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:12)
dico quod velocitas corporis ante incidentiam est ad ejus velocitatem post emergentiam, ut sinus emergentiae ad sinum incidentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 8:2)
Velocitas corporis tempore ATD cadentis est ad velocitatem, quam eodem tempore in spatio non resistente acquireret, ut triangulum APD ad Sectorem Hyperbolicum ATD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 54:2)
Est igitur tempus quo corpus in Medio resistente cadendo velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 56:2)
Ex vi centripeta invenienda est velocitas in locis singulis, deinde ex velocitatis retardatione quaerenda Medii densitas:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 29:1)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)
& si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V^2, & area ABGE ut V^2 + 2VI + I^2, & divisim area DFGE ut 2VI + I^2, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:3)
Patet hoc per Schol. Prop. IV. Lib. I. Cum autem perpendiculum Kd in SP demissum sit ipsius EL pars tertia, & ipsius SP seu ML in octantibus pars dimidia, vis EL in Octantibus, ubi maxima est, superabit vim ML in ratione 3 ad 2, adeoque erit ad vim illam, qua Luna tempore suo periodico circa Terram quiescentem revolvi posset, ut 100 ad 2/3 × 17872½ seu 11915, & tempore CS velocitatem generare deberet quae esset pars 100/11915 velocitatis Lunaris, tempore autem CPA velocitatem majorem generaret in ratione CA ad CS seu SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:19)
Velocitas gyrantis in Sectione quavis Conica est ad velocitatem gyrantis in circulo in distantia dimidii lateris recti Sectionis, ut distantia illa ad perpendiculum ab umbilico in tangentem Sectionis demissum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 44:2)
eorum velocitates in aliquo aequalium altitudinum casu aequales, velocitates eorum in omnibus aequalibus altitudinibus erunt aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 2:4)
erit ut ejus velocitas & Massa conjunctim, id est ut velocitas & cubus diametri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 17:5)
Componitur igitur area tota Hyperbolica ABOL ex particulis KNOL velocitati AP semper proportionalibus, & propterea spatio velocitate ista descripto proportionalis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:14)
Sit velocitas quacum effluendo exit de foramine, ad velocitatem V ut d ad e;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:3)

SEARCH

MENU NAVIGATION