라틴어 문장 검색

Vires autem TF, TH agendo secundum lineam PF plano AOP perpendicularem mutant solummodo motum corporis quatenus huic plano perpendicularem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:11)
erit ut ejus velocitas & Massa conjunctim, id est ut velocitas & cubus diametri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 17:5)
Componitur igitur area tota Hyperbolica ABOL ex particulis KNOL velocitati AP semper proportionalibus, & propterea spatio velocitate ista descripto proportionalis est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:14)
Sit velocitas quacum effluendo exit de foramine, ad velocitatem V ut d ad e;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:3)
fiet {2dd ÷ ee}S aequalis A. Unde est dd ad ee ut A ad 2S, & d ad e in dimidiata ratione ½A ad S. Est igitur velocitas quacum aqua exit e foramine, ad velocitatem quam aqua cadens, & tempore T cadendo describens spatium S acquireret, ut altitudo aquae foramini perpendiculariter incumbentis, ad medium proportionale inter altitudinem illam duplicatam & spatium illud S, quod corpus tempore T cadendo describeret.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:6)
Tum dicendo quod corpus, velocitate mediocri describendo circulos duodecim mediocres, amitteret velocitatum illarum differentiam, collegi resistentiam qua differentia illa eo omni corporis per circulos duodecim itinere amitti posset;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 104:5)
Designet jam AV + CV^2 resistentiam Globi in aere cum velocitate V moventis, & cum velocitas maxima, in Casu columnae, quartae sit ad velocitatem maximam in casu columnae primae ut 1 ad 8, & resistentia in Casu columnae quartae ad resistentiam in Casu columnae primae in ratione arcuum differentiae in his casibus, ad numeros oscillationum applicatae, id est ut 2/535 ad 16 ÷ 85½ seu ut 85½ ad 4280:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:1)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
Et ob datam velocitatum rationem, describent semper spatia quae sunt ut velocitates primae & tempora conjunctim. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 16:7)
& propterea si corporis velocissimi in superioribus Corollariis velocitas diminuatur, quoniam resistentia diminueretur in duplicata ratione velocitatis, si modo vires particularum in eadem ratione duplicata diminuerentur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 14:5)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
duas velocitatis partes, et B sequatur in eadem recta cum velocitatis partibus decem, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 23:2)
5, vis Fluidi in Globum eadem est, sive Globus quiescat & Fluidum uniformi cum velocitate moveatur, sive Fluidum quiescat & Globus eadem cum velocitate in partem contrariam pergat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 60:2)
Unde cum pondus Globi aquei, quo tempore Globus cum velocitate uniformiter continuata describat longitudinem pedum 30,556, velocitatem illam omnem in Globo cadente generare posset;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 82:3)
Vis Cochleae ad premendum corpus est ad vim manus manubrium circumagentis, ut circularis velocitas Manubrii ea in parte ubi a manu urgetur, ad velocitatem progressivam Cochleae versus corpus pressum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:9)

SEARCH

MENU NAVIGATION