라틴어 문장 검색

& LN constituat angulum ALN aequalem angulo FHI, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 132:6)
Fac angulum iEP aequalem angulo IGF, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 132:9)
& per P agatur QPf, quae cum recta AED contineat angulum PQE aequalem angulo FIG, rectaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 132:11)
capiatur angulus ACq aequalis angulo ACQ + E + G + I &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:16)
hoc est, ut angulus VCp ad angulum VCP, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 3:4)
produc ad m, ut sit mr ad kr ut angulus VCp ad angulum VCP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:3)
alteri prioribus transversi secundum lineas ipsis PC, pC perpendiculares determinantur) motus versus centrum erunt aequales, & motus transversus corporis p erit ad motum transversum corporis P, ut motus angularis lineae pC ad motum angularem lineae PC, id est ut angulus VCp ad angulum VCP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:6)
mr ad kr ut angulus VCp ad angulum VCP, hoc est, ut motus transversus corporis p ad motum transversum corporis P, manifestum est quod corpus p completo illo tempore reperietur in loco m.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:12)
hoc est si capiantur datae quantitates F, G in ea ratione ad invicem quam habet angulus VCP ad angulum VCp, ut Gq. - Fq. ad Fq. Et propterea, si centro C intervallo quovis CP vel Cp describatur Sector circularis aequalis areae toti VPC, quam corpus P tempore quovis in orbe immobili revolvens radio ad centrum ducto descripsit, differentia virium, quibus corpus P in orbe immobili & corpus p in orbe mobili revolvuntur, erit ad vim centripetam qua corpus aliquod radio ad centrum ducto Sectorem illum, eodem tempore quo descripta sit area VPC, uniformiter describere potuisset, ut Gq. - Fq. ad Fq. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 7:3)
aliis in locis P indefinite dicatur X, altitudine CP nominata A, & capiatur G ad F in data ratione anguli VCp ad angulum VCP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 11:4)
G ad F, hoc est angulus VCp ad angulum VCP ut 1 ad [sqrt]3.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 17:30)
G ad F, id est angulus VCp ad angulum VCP, ut 1 ad [sqrt]n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:15)
Unde est G ad F, id est angulus VCp ad angulum VCP, ut 1 ad [sqrt]{{mb + nc} ÷ {b + c}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:8)
& angulus emergentiae semper angulo incidentiae aequalis existens, eidem etiamnum manebit aequalis. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:18)
Rationes autem ineundo invenio quod differentia inter curvaturam orbis Cpa in vertice a, & curvaturam circuli centro S intervallo SA descripti, sit ad differentiam inter curvaturam Ellipseos in vertice A & curvaturam ejusdem circuli, in duplicata ratione anguli CSP ad angulum CSp;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:8)

SEARCH

MENU NAVIGATION