라틴어 문장 검색

& propterea si sumantur arcus toti AB, aB in eadem ratione, corpora D, d simul describent hos arcus, & in locis A & a motum omnem simul amittent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 14:19)
Ergo velocitates semper erunt ut arcus toti describendi, & propterea arcus illi simul describentur. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 18:7)
Earum vero quae in majoribus arcubus fiunt, tempora sunt paulo majora, propterea quod resistentia in descensu corporis qua tempus producitur, major sit pro ratione longitudinis in descensu descriptae, quam resistentia in ascensu subsequente qua tempus contrahitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:3)
Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areae Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium momentorum pergent esse aequales, & aequalibus itidem momentis subinde decrescentes simul evanescent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:1)
id adeo quia si resistentia Z augeatur, velocitas una cum arcu illo Ca, qui in ascensu corporis describitur, diminuetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:3)
& puncto in quo motus omnis una cum resistentia cessat propius accedente ad punctum C, resistentia citius evanescet quam area Y. Et contrarium eveniet ubi resistentia diminuitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:4)
Proindeque areae illae simul incipiunt & simul evanescunt, & propterea semper sunt aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 34:4)
Igitur area {OR ÷ OQ} IEF - IGH aequalis est areae Z, per quam resistentia exponitur, & propterea est ad aream PINM per quam gravitas exponitur, ut resistentia ad gravitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 34:5)
& propterea in casu priore addita areae BRSa, in posteriore eidem subducta, relinquet aream BKTa areae BRSa aequalem quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:24)
Et propterea:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:11)
Est igitur rectangulum sub ½Ba & Aa aequale rectangulo sub 2/3Ba & OV, adeoque OV aequalis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:2)
differentia inter arcum descensu descriptum & arcum subsequente ascensu descriptum, augebitur vel diminuetur in eadem ratione quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 49:2)
Et area illa, si maneat longitudo aB, augetur vel diminuitur in ratione ordinatim applicatarum DK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:3)
Proindeque rectangulum sub Aa & ½aB est ut aB & resistentia conjunctim, & propterea Aa ut resistentia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:5)
& propterea efficient ut correspondentes particulae figuras similes describere pergant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:8)

SEARCH

MENU NAVIGATION