라틴어 문장 검색

At Timotheus, qui prius a Iudaeis fuerat superatus, convocatis peregrinis copiis valde multis et congregatis equis, qui erant ex Asia, non paucis, adfuit quasi armis victam Iudaeam capturus.
(불가타 성경, 마카베오기 하권, 10장24)
Cumque pugna valida fieret et hi, qui circa Iudam erant, per auxilium Dei prospere gessissent, nomades victi petebant a Iuda dextram sibi dari, promittentes se pascua daturos et in ceteris profuturos eis.
(불가타 성경, 마카베오기 하권, 12장11)
Eorum liberorum, quos Boetius de geometria scripssse dicitur, investigare veram inscriptionem nihil aliud esset nisi operam et tempus perdere.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 4:10)
delegit enim de infinitae multitudinis pluralitate finitae terminum quantitatis et interminabilis magnitudinis sectione reiecta definitia sibi ad cognitionem spatia sepoposcit Constat igitur, quisquis hae pretermiserit, omnem philosophiae perdidisse doctrinam.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:16)
Si senim unum iungas his, qui sequuntur, duobus fiunt iij, id est, qui uno minus quaternario cadant, et si superioribus addas iij, sunt vii, qui ab oconario sequente sola unitate vincuntur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 15:2)
Est enim duodenarii medietas vj pars tertia iiij pars quarta iij pars sexta ij pars duodecima j omnisque hic cumulus redundat in xvj et totius corporis sui multitudinem vincunt.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:7)
Atque hic quidem, cuius compositae partes totius summam numeri vincunt, superfluus appellatur, deminutus vero ille, cuius eodem modo compositae partes totius termini multitudine superantur, ut viij vel xiiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:10)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
quae linea, quod unius est intervalli sortita naturam, a superficie uno intervallo, a soliditate duobus spatiis vincitur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:39)
Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Nascuntur autem hi numeri, qui extensi in latitudinem v angulos pandunt, ab eadem naturalis numeri quantitate in se coacervata, ita ut duobus semper interiectis numeris superiori vel superioribus vincens ternario eum, cui iungendus est, adgregetur.
(보이티우스, De Arithmetica, Liber secundus, De generatione pentagonorum. 1:1)
Pentagoni vero natura fuit ex duobus interpositis relictisque, qui se ternario vincerent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:4)
Nam si quattuor interpositis, qui se quinario vincant, adgregaveris, eptagoni continuo figura nascetur, ut hi numeri sint eorum radices et, ut superius dictum est, fundamenta:
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:2)

SEARCH

MENU NAVIGATION