라틴어 문장 검색

Datur autem ratio DN ad VX, & propterea datur etiam rectangulum DN in VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:2)
Resistentia autem invenitur in ratione ad Gravitatem quam habet XY ad YG, & velocitas ea est quacum corpus in Parabola pergeret verticem G diametrum DG & latus rectum YX quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:3)
resistentia in loco aliquo G sit ad gravitatem ut XY ad YG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:7)
Resistentia autem in eodem loco G fit ad Gravitatem ut S in XY ÷ A ad 2RR, id est XY ad {{3nn + 3n} ÷ {n + 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:4)
Quoniam motus non fit in Parabola nisi in Medio non resistente, in Hyperbolis vero hic descriptis fit per resistentiam perpetuam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:1)
÷ GV}, resistentia autem ad vim gravitatis ut GT ad {{3nn + 3n} ÷ {n + 2}}GV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:3)
÷ AI}, ac resistentia ibidem ad Gravitatem ut AH ad {3nn + 3n} ÷ {n + 2} in AI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 92:4)
acceleratrix servetur, & proportio resistentiae in A ad gravitatem motricem augeatur in ratione, quacunque:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:3)
& propterea minuetur AH in eadem ratione, & AI minuetur in ratione illa duplicata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:7)
Sin figura ad inveniendam resistentiam Medij accuratius determinanda sit, corrigendae sunt semper hae longitudines per Regulam quartam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:13)
Agatur CH occurrens ipsis AK & KF, illi in C, huic in F, & ob parallelas CH, MX & aequales AC, AI, erit AE aequalis AM, & propterea etiam aequalis KN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:8)
Sed CE est ad AE ut FH ad KN, & propterea CE & FH aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:9)
Et resistentia in G erit ad vim Gravitatis ut TG ad {{3nn - 3n} ÷ {n - 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:8)
Nam decrementum velocitatis est ut resistentia, hoc est (per Hypothesin) ut summa duarum quantitatum, quarum una est ut velocitas, altera ut quadratum velocitatis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 5:8)
Sed velocitatis decrementum, tempore sibi reciproce proportionali, quo data spatii particula DdeE describitur, est ut resistentia & tempus conjunctim, id est directe ut summa duarum quantitatum, quarum una est velocitas, altera ut velocitatis quadratum, & inverse ut velocitas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 11:3)

SEARCH

MENU NAVIGATION