라틴어 문장 검색

tum corporum latera cubica, tum corpusculorum attractorum distantiae a corporibus, ut A & B:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 10:7)
id est, ut corporum latera illa cubica A & B. Si vires particularum decrescant in ratione triplicata distantiarum a corpusculis attractis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 10:12)
id est, reciproce ut latera cubica A & B. Et sic in caeteris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 10:22)
Ejusmodi quantitates sunt Facti, Quoti, Radices, rectangula, quadrata, cubi, latera quadrata, latera cubica & similes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:5)
Agatur enim Dvq abscindens Sectoris ADt & trianguli ADp momenta, seu particulas quam minimas simul descriptas tDv & pDq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:2)
Agatur DQV abscindens tum Sectoris DAV, tum trianguli DAQ particulas quam minimas TDV & PDQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:2)
secundus terminus qui hic est ao ÷ e, denotabit differentiam inter BC & DF, id est lineolam IF, quae abscinditur complendo parallelogrammum BC - ID, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:6)
& tum demum si per omnia agatur Curva linea regularis NNXN, haec abscindet SX quaesitae longitudini AH aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:11)
dico quod si Circuli & Hyperbolae diametris parallelae rectae per conjugatarum diametrorum terminos ducantur, & velocitates sint ut segmenta quaedam parallelarum a dato puncto ducta, Tempora erunt ut arearum Sectores, rectis a centro ad segmentorum terminos ductis abscissi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 17:2)
Agatur enim DVQ, abscindens & velocitatis AP momentum PQ, & Sectoris DET momentum DTV dato temporis momento respondens:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:1)
& linea Zt producta abscindet lineam QT densitati proportionalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:4)
vires comprimentes erunt ut latera cubica Dignitatis E^{n + 2}, cujus index est numerus n + 2;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:4)
ideoque vis, qua Fluidum in eodem vase comprimitur, erit reciproce ut latus cubicum quadrato-cubi densitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:17)
Dein perpendiculo MN abscindatur area Hyperbolica PINM quae sit ad aream Hyperbolicam PIEQ ut arcus CZ ad arcum BC descensu descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:4)
Et si perpendiculo RG abscindatur area Hyperbolica PIGR, quae sit ad aream PIEQ ut arcus quilibet CD ad arcum BC descensu toto descriptum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:5)

SEARCH

MENU NAVIGATION