라틴어 문장 검색

Unde si Systematis hujus partes in Ellipsibus vel Circulis sine perturbatione insigni moveantur, manifestum est, quod eaedem a viribus acceleratricibus ad alia corpora tendentibus, aut non urgentur nisi levissime, aut urgentur aequaliter & secundum lineas parallelas quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 45:2)
) vis qua Ellipsis circa umbilicum S describitur tendere debeat ad umbilicum illum, & esse quadrato distantiae PS reciproce proportionalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:19)
Si corpus aliquod vi reciproce proportionali quadrato distantiae suae a centro, revolveretur circa hoc centrum in Ellipsi, & mox, in descensu ab Apside summa seu Auge ad Apsidem imam, vis illa per accessum perpetuum vis novae augeretur in ratione plusquam duplicata distantiae diminutae:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:2)
describerent corpus Q ex una parte, & commune centrum aliorum duorum ex altera parte, circa commune omnium centrum quiescens, Ellipses accuratas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 81:6)
In Systemate corporum, quorum vires decrescunt in ratione duplicata distantiarum, si minora circa maximum in Ellipsibus umbilicum communem in maximi illius centro habentibus quam fieri potest accuratissimis revolvantur, & radiis ad maximum illud ductis describant areas temporibus quam maxime proportionales:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 88:2)
& propterea si corpus illud attrahens vel quiescat, vel progrediatur uniformiter in directum, corpus attractum movebitur in Ellipsi centrum habente in attrahentis centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 17:3)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
Si resistentia sit ut velocitas, Figura aBKkT Ellipsis erit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:1)
adeoque figura BKVTa Ellipsis, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:6)
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)
Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, haec si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 47:2)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
partes fluidi non prius perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint eorum tempora periodica ut quadrata distantiarum à centro vorticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:4)
Nam Planetae secundum Hypothesin Copernicaeam circa Solem delati revolvuntur in Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:2)
Planetae moventur in Ellipsibus umbilicum habentibus in centro Solis, & radiis ad centrum illud ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 9:1)

SEARCH

MENU NAVIGATION