라틴어 문장 검색

Iudaeos autem, quos decreverat nec sepultura quidem se dignos habiturum, sed avibus devorandos cum parvulis se feris proiecturum, omnes hos aequales Atheniensibus facturum;
(불가타 성경, 마카베오기 하권, 9장15)
Et par quidem est, qui potest in aequalia dividet eo, quod in medio praedictus unus intercedat.
(보이티우스, De Arithmetica, Liber primus, Definitio et divisio numeri et definitio paris et inparis. 1:3)
si enim ponatur par numerus, potest in duo aequalia dividi, ut denarius dividitur in quinos, porro autem et per inaequalia, ut idem denarius in iij et vij, sed hoc modo, ut cum una pars fuerit divisionis par, alia quoque par inveniatur, et si una inpar, reliqua ab eius inparitate non discrepet, ut in eodem numero, qui est denarius.
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:4)
Si autem ipse, vel alius numerus par, dividatur in aequales, ut oconarius in iiij et iiij, et item per inaequales, ut idem octonarius in v et iij, in illa quidem divisione utraeque partes pares factae sunt, in hac utraque inpares extiterunt;
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:6)
Si vero fuerint duae medietates iunctae, ipsoae utraeque aequales erunt super se terminis constitutis, ut est in hoc ordine ij vj x xiij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:16)
Hic autem talis est, qui dividitur in aequas partes, cuiusque pars in alias aequas dividi potest, etiam aliquando partes partium dividuntur, sed non usque ad unitatem progreditur aequalis illa disiunctio, ut sunt xxiiij et xxviij.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:2)
Sunt enim duabus in latitudine medietatibus aequales duae extremitates vel una medietate duae duplices extremitates.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:2)
At vero ubi duas meidetates habent, utraeque extremitates iuncate utrisque medietatibus aequales fiunt, ut xij et xxvj, cum iunxeris, fiunt xlviij.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:4)
sed eum, qui relinquitur, numerum sibi ipsi videbis aequalem.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:2)
Quibus item si quis ternarium demat, iij relinquentur, de quibus iij detrahi nequeunt, atque hic est sibi ipsi aequalis.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 3:3)
Nam iij, qui detrahebantur, usque ad ternarium numerum pervenerunt, a quo quoniam aequales sunt, detrahi minuique non poterunt.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 3:4)
Semel enim j solam efficit unitatem, quae partibus suis aequalis est potentia solum, ceteris etiam actu atque opere perfectis.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:19)
Omne enim aut aequale est aut inaequale, quicquid alterius comparatione metimur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:2)
Et aequale quidem est, quod ad aliquid comparatum neque minore summa infra est, neque maiore transgreditur, ut denarius denario vel ternarius ternario vel cubitum cubito vel pes pedi et his similia.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:3)
Hoc autem in hac est dispositione divinum, quod omnes angulares numeri tetragoni sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:1)

SEARCH

MENU NAVIGATION