라틴어 문장 검색

Sit enim IK circulus minor AEquatori AE parallelus, sitque L particula Terrae in circulo illo extra globum Pape sita.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:1)
Et si particulae illae omnes locarentur in AEquatore, efficacia virium omnium LN evanesceret, & efficacia virium omnium MN augeretur in ratione quatuor ad tria.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:7)
Quare excessus ille, qui est efficacia absoluta particularum in locis propriis, est pars quarta efficaciae particularum earundem in AEquatore.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:8)
& annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 61:3)
si annulus iste Terram secundum aequatorem cingeret, & uterque simul circa diametrum annuli revolveretur, motus annuli esset ad motum globi interioris (per hujus Lem. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:6)
& propterea (per Lem. I.) si materia annuli per totam globi superficiem, in morem figurae PapAPepE, ad superiorem illam Terrae partem constituendam spargeretur, vis & efficacia tota particularum omnium ad Terram circa quamvis AEquatoris diametrum rotandam, atque adeo ad movenda puncta aequinoctialia, evaderet quadruplo minor quàm prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:16)
Unde etiam si orbes ad centrum densiores sint quàm ad circumferentiam, idem erit motus aequinoctiorum Terrae totius ac prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:9)
Quod si figurae orbium mutentur, Terraque ad aequatorem AE, ob densitatem materiae ad centrum, jam altius ascendat quàm prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:11)
regressus aequinoctiorum ex aucta altitudine augebitur, idque in orbibus singulis seorsim existentibus, in ratione majoris altitudinis materiae juxta orbis illius aequatorem;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:12)
in Terra autem tota in ratione majoris altitudinis materiae juxta aequatorem orbis non extimi AQEq, non intimi Gg, sed mediocris alicujus CScs.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:13)
Terram autem ad centrum densiorem esse, & propterea sub AEquatore altiorem esse quàm ad polos in majore ratione quàm 692 ad 689, in superioribus insinuavimus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:14)
Et ratio majoris altitudinis colligi ferè potest ex majore diminutione gravitatis sub aequatore, quàm quae ex ratione 692 ad 689 consequi debeat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:15)
minuenda erit gravitas Terrae ad aequatorem, & ibidem augenda ejus altitudo, in ratione 1000 ad 760 quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:20)
Rursus hic motus, ob inclinationem plani AEquatoris ad planum Eclipticae, minuendus est, idque in ratione Sinus complementi inclinationis ad Radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:1)
Nam distantia particulae cujusque terrestris à plano QR, quo tempore particula illa à plano Eclipticae longissimè distat, in Tropico suo (ut ita dicam) consistens, diminuitur, per inclinationem planorum Eclipticae & AEquatoris ad invicem, in ratione Sinus complementi inclinationis ad Radium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:2)

SEARCH

MENU NAVIGATION