라틴어 문장 검색

Quare cum densitates sint ut harum pressionum summae, differentiae densitatum AH - BI, BI - CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:11)
erunt ut summarum differentiae AH ÷ SA, BI ÷ SB, CK ÷ SC, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:12)
Centro S Asymptotis SA, SX describatur Hyperbola quaevis, quae secet perpendicula AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:13)
erunt ut AH ÷ SA, BI ÷ SB, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:17)
ut AH × th ÷ SA ut BI × ui ÷ SB, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:20)
& propterea differentiis hisce proportionales areae thlx, xlnz aequales erunt inter se, & densitates St, Sx, Sz, id est AH, DL, FN, continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:31)
Hinc si dentur Fluidi densitates duae quaevis, puta AH & CK, dabitur area thkw harum differentiae tw respondens;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 37:2)
densitates AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:10)
densitates AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:19)
erit AH Sinus inclinationis quaesitae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 31:5)
+ 2EC × BH = 2EC × AB + 2EC × BH = 2EC × AH.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 32:9)
ut AH.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 32:11)
Igitur si AH in casu aliquo sit Sinus inclinationis, augebitur ea iisdem incrementis cum sinu inclinationis, per Corol. 3.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 32:16)
Sed AH ubi punctum G incidit in punctum alterutrum B vel D huic Sinui aequalis est, & propterea eidem semper aequalis manet. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 32:18)
ut contentum sub inclinationis Sinu AH & Sinu anguli recti BEG, qui est duplicata distantia Nodorum à Sole, ad quadruplum quadratum Radii;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 33:7)

SEARCH

MENU NAVIGATION