라틴어 문장 검색

deinde ex his contiguis factis conflari annulum fluidum, rotundum ac corpori S concentricum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 70:3)
Si corporis attracti, ubi attrahenti contiguum est, attractio longe fortior sit, quam cum vel minimo intervallo separantur ab invicem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 2:1)
Concipe jam DPF, EPG designare Conos oppositos, angulis verticalibus DPF, EPG infinite parvis descriptos, & lineas etiam DH, EI infinite parvas esse;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:10)
& Conorum particulae Sphaeroidum superficiebus abscissae DHKF, GLIE, ob aequalitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud aequaliter trahent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:11)
AEquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:14)
Nam partes sphaericae contiguae se mutuo premunt aequaliter in puncto contactus, per motus Legem III.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:3)
Partes igitur duae quaevis sphaericae non contiguae, quia pars sphaerica intermedia tangere potest utramque, prementur eadem vi. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:6)
Proinde corpus quod specifice gravius est quam Fluidum sibi contiguum subsidebit, & quod specifice levius est ascendet, motumque & figurae mutationem consequetur, quantum excessus ille vel defectus gravitatis efficere possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 22:2)
Ut si base circulari CEBH, quae centro O, radio OC describitur, & altitudine OD, construendum sit frustum coni CBGF, quod omnium eadem basi & altitudine constructorum & secundum plagam axis sui versus D progredientium frustorum minime resistatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 31:2)
biseca altitudinem OD in Q & produc, OQ ad S ut sit QS aequalis QC, & erit S vertex coni cujus frustum quaeritur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 31:3)
Frustum igitur degf inter Conum Ade & frustum fhig comprimitur utrinque, & propterea (per Corol. 6. Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:7)
Unde cùm impressiones sunt ut contiguae superficies & harum translationes ab invicem, erunt translationes inversè ut superficies, hoc est inversè ut superficierum distantiae ab axe.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:6)
Unde cum impressiones sint ut contiguae superficies & harum translationes ab invicem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:8)
& annulus unusquisque habebit annulos quatuor sibi contiguos, unum interiorem, alterum exteriorem & duos laterales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:4)
contiguus poni, Scipio magne, tibi.
(푸블리우스 오비디우스 나소, Ars amatoria, Liber III 83:1)

SEARCH

MENU NAVIGATION