라틴어 문장 검색

sectio Conica transiens per puncta quinq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 43:6)
Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 56:3)
Conicis sectionibus hic circulum annumero.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:3)
Nam rectae quaevis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quae per concursum convergentium transit;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:4)
Nam quoties duae sectiones conicae obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:2)
Recta item & sectio Conica in constructione planorum problematum vertuntur in rectam & circulum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:3)
Sunto hi, kl tangentes duae parallelae, ik tangens tertia, & hl recta huic parallela transiens per puncta illa a, b, per quae Conica sectio in hac figura nova transire debet, & parallelogrammum hikl complens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:4)
Per figurae centrum O agatur pq, & existente Oq aequali Op erit q punctum alterum per quod sectio Conica in hac figura nova transire debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 76:5)
dico quod sectionis semidiameter hisce duabus parallela, sit media proportionalis inter harum segmenta, punctis contactum & tangenti tertiae interjecta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 82:3)
erit ex natura sectionum Conicarum, ut EC ad CA ita CA ad LC, & ita divisim EC - CA ad CA - CL seu EA ad AL, & composite EA ad EA + AL seu EL ut EC ad EC + CA seu EB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 85:3)
Est itidem ex natura sectionum Conicarum LI seu CK ad CD ut CD ad CH atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 85:6)
Si parallelogrammi latera quattuor infinite producta tangant sectionem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 89:1)
Tangant parallelogrammi MIKL latera quatuor ML, IK, KL, MI sectionem Conicam in A, B, C, D, & secet tangens quinta FQ haec latera in F, Q, H & E:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 91:1)
Unde etiam si Eq, eQ jungantur & bisecentur, & recta per puncta bisectionum agatur, transibit haec per centrum Sectionis Conicae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 94:2)
(per Lemma XXIII) & medium rectae MK est centrum Sectionis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 94:4)

SEARCH

MENU NAVIGATION