라틴어 문장 검색

adeoque figura BKVTa Ellipsis, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:6)
& Ellipsis, centro O, semiaxibus OB, OV descripta, figuram aBKVT, eique aequale rectangulum Aa × BO, aequabit quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:8)
Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, haec si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 47:2)
Nam Planetae secundum Hypothesin Copernicaeam circa Solem delati revolvuntur in Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:2)
Planetae moventur in Ellipsibus umbilicum habentibus in centro Solis, & radiis ad centrum illud ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 9:1)
si Sol quiesceret & Planetae reliqui non agerent in se mutuò, forent orbes eorum Elliptici, Solem in umbilico communi habentes, & areae describerentur temporibus proportionales (per Prop. I. & XI, & Corol. 1. Prop. XIII. Lib. I.) Actiones autem Planetarum in se mutùo perexiguae sunt (ut possint contemni) & motus Planetarum in Ellipsibus circa Solem mobilem minus perturbant (per Prop. LXVI. Lib. I.) quàm si motus isti circa Solem quiescentem peragerentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 10:4)
Planetas majores, interea dum circa Solem feruntur, posse alios minores circum se revolventes Planetas deferre, & minores illos in Ellipsibus, umbilicos in centris majorum habentibus, revolvi debere patet per Prop. LXV. Lib. I. Actione autem Solis perturbabuntur eorum motus multimode, iisque adficientur inaequalitatibus quae in Luna nostra notantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 6:1)
adeoque in transitu Lunae à Syzygiis ad Quadraturas, ubi hora tertia Solaris praecedit tertiam Lunarem, maxima aquae altitudo praecedet etiam tertiam Lunarem, idque maximo intervallo paulo post Octantes Lunae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 14:7)
& si axibus Hh, Kk describatur Ellipsis, deinde Ellipseos hujus revolutione circa axem majorem Hh describatur Sphaerois HPKhpk;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:14)
Exponatur vis maxima EL in Octantibus per aream FK × Kk rectangulo ½SP × Pp aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:20)
Haec ita se habent ubi Variatio in Octantibus est magnitudinis mediocris.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 31:2)
Si Luna P in Ellipsi DBCA circa Terram in centro Ellipseos quiescentem moveretur, & radio SP ad Terram ducto describeret aream CSP tempori proportionalem;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:2)
Quo pacto tangens anguli CSP jam erit ad tangentem motus medii ut 68-5958/10000 ad 69-11/12, & angulus CSP in Octantibus, ubi motus medius est 45 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:8)
Designet Qpmaq Ellipsim, axe majore Qq, minore ab descriptam, QAq circulum circumscriptum, T Terram in utriusque centro communi, S Solem, p Lunam in Ellipsi moventem, & pm arcum quem data temporis particula quam minima describit, N & n Nodos linea Nn junctos, pK & mk perpendicula in axem Qq demissa & hinc inde producta, donec occurrant circulo in P & M, & lineae Nodorum in D & d.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 4:1)
Et si Luna, radio ad Terram ducto, aream describat tempori proportionalem, erit motus Nodi in Ellipsi ut area pDdm.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 4:2)

SEARCH

MENU NAVIGATION