라틴어 문장 검색

Circulum in his Corollariis refero ad Ellipsin, & casum excipio ubi corpus recta descendit ad centrum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:5)
Sed hoc rectangulum, per Corollarium Theorematis Sexti, est in ratione composita ex dimidiata ratione lateris recti & integra ratione periodici temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 32:4)
Patet per Corollarium quintum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 44:3)
Nam proportio SP + PH ad PH ut 2SP ad L, in casu hujus Corollarii, fit DS + DH ad DH ut 4DS ad L, & divisim DS ad DH ut 4DS - L ad L.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 50:3)
Unde etiam Trajectoriarum centra, diametri & latera recta inveniri possunt, ut in Corollario secundo Lemmatis XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 45:2)
Componi possent harum assertionum Demonstrationes more magis Geometrico.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 67:6)
Nam per Corollarium Lemmatis superioris, est ME ad EI ut AM seu BK ad BQ, & componendo ME ad MI ut BK ad KQ. Q. E. D. Item KH ad HL ut BK seu AM ad AF, & dividendo KH ad KL ut AM ad MF. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 91:3)
In constructione Corollarii hujus postquam ducitur LK secans CE in i, producere licet iE ad V, ut sit EV ad iE ut FH ad HI, & agere Vf parallelam ipsi BD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 125:1)
Corollarium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 12:1)
& propterea per descriptionem Curuarum Geometrice rationalium determinari nequit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:2)
Curvas Geometrice rationales appello quarum puncta omnia per longitudines aequationibus definitas, id est, per longitudinum rationes complicatas, determinari possunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:3)
(ut Spirales, Quadratrices, Trochoides) Geometrice irrationales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:5)
Aream igitur Ellipseos tempori proportionalem abscindo per Curvam Geometrice irrationalem ut sequitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:7)
Id ex Propositionibus XI, XII, XIII & earum Corollariis constat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:3)
Singulis igitur temporis particulis generantur arearum duarum particulae KSk, SDd, quae, si magnitudo earum minuatur & numerus augeatur in infinitum, rationem obtinent aequalitatis, & propterea (per Corollarium Lemmatis IV) areae totae simul genitae sunt semper aequales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:11)

SEARCH

MENU NAVIGATION