라틴어 문장 검색

erit Hyperbolae hujus sector DET ut tempus descensus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 23:7)
Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:2)
Nam velocitas in Medio non resistente, tempori atque adeo Sectori huic proportionalis est;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:4)
ubi quam minima est, accedit ad rationem aequalitatis, pro more Sectoris & Trianguli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:7)
& (per Lem. X. Lib. I.) lineola TQ, quae vi illa generatur, est in ratione composita ex ratione hujus vis & ratione duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu, ut infinite minorem quam vis centripeta negligo) erit TQ × SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:4)
Ex resistentia oritur arearum differentia RSr, & propterea resistentia est ut lineolae Qr decrementum Rr collatum cum quadrato temporis quo generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:13)
Nam lineola Rr (per Lem. X. Lib. I.) est in duplicata ratione temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:14)
& EF, FG lineolas Physicas seu Medii partes lineares punctis illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
Et eodem argumento differentia virium Elasticarum punctorum Physicorum [epsilon] & [gamma], in reditu lineolae Physicae [epsilon][gamma] est ut [Omega][phi].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:3)
Sed differentia illa (id est excessus vis Elasticae puncti [epsilon] supra vim elasticam puncti [gamma],) est vis qua interjecta Medii lineola Physica [epsilon][gamma] acceleratur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:4)
& propterea vis acceleratrix lineolae Physicae [epsilon][gamma] est ut ipsius distantia a Medio vibrationis loco [Omega].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:5)
Nam lineola Physica [epsilon][gamma], quamprimum ad locum suum primum redierit, quiescet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 47:3)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Designet jam PM arcum, quem Luna dato tempore quam minimo describit, & ML lineolam quam Luna, impellente vi praefata 3IT, eodem tempore describere posset.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:1)
Et quoniam vis qua lineola LM generatur, si tota simul & semel in loco P impressa esset, efficeret ut Luna moveretur in arcu, cujus Chorda esset LP, atque adeò transferret Lunam de plano MPmT in planum LPlT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:7)

SEARCH

MENU NAVIGATION