라틴어 문장 검색

Hinc si Asymptotis rectangulis ADC, CH describatur Hyperbola BG, sintq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:2)
Asymptotis rectangulis AC, CH, per punctum B describatur Hyperbola secans perpendicula DE, de in G, g;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 17:2)
) ut incrementa velocitatum, id est, ut rectangula Ak, Kl, Lm, Mn &c;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:10)
hujus) ut area DR × AB - RDGT, hoc est, ut linea Rr. Ipso autem motus initio area RDGT aequalis est rectangulo DR × AQ, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:8)
Hyperbolae BklmG, centro C Asymptotis rectangulis CD, CH descriptae occurrentia in B, k, l, m, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:5)
necnon spatium quod corpus aliquod eodem tempore AD, velocitate prima AB in Medio non resistente describere posset, per rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 5:4)
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolae) CA ad CD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:1)
Ejusmodi quantitates sunt Facti, Quoti, Radices, rectangula, quadrata, cubi, latera quadrata, latera cubica & similes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:5)
momentum vel mutatio rectanguli AB fuerit Ab + aB, & contenti ABC momentum fuerit ABc + AbC + aBC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:4)
Rectangulum quodvis motu perpetuo auctum AB, ubi de lateribus A & B deerant momentorum dimidia ½a & ½b, fuit A - ½a in B - ½b, seu AB - ½aB - ½Ab + ¼ab;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 26:2)
& ipsius A^2, id est rectanguli AB, momentum aB + Ab erit 2aA, ipsius autem A^3, id est contenti ABC, momentum aBC + AbC + ABc erit 3aA^2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 28:3)
Idem intelligendum est de lateribus rectanguli cujuscunq; dati.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 33:3)
& centro C Asymptotis rectangulis CA, CH describatur Hyperbola quaevis BNS, erectis perpendiculis AB, KN, LO, PR, QS occurrens in B, N, O, R, S. Quoniam AK est ut APq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:6)
Componatur ratio ipsius KL cum ratione ipsius KN, & fiet rectangulum KL × KN ut AP × KC × KN;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:10)

SEARCH

MENU NAVIGATION