라틴어 문장 검색

Quod si rursus relicto medio quaternario quinarium similiter adgregavero, quadratus mihi tertius, id est novenarius, procreatur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:4)
Nam in primo quadrato, quoniam ex uno fit, unus est in latere, in secundo, id est quaternario, quoniam ex uno et tribus procreatur, qui duo sunt termini, binario latus texitur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:9)
Et in novenario, quoniam tribus numeris procreatur, latus ternario continetur, atque idem in aliis videre licet.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:10)
Namque unitati intermissis duobus et tribus si iiij iungas, qui tribus ipsam superant unitatem, quinarius pentagonus procreabitur.
(보이티우스, De Arithmetica, Liber secundus, De generatione pentagonorum. 1:2)
Post iiij vero si intermisso quinario et senario septem adgreges, duodenarium pentagonum procreabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione pentagonorum. 1:3)
Quadrati vero numeri, id est tetragoni, procreatio fiebat ex numeris, qui uno intermisso copulabantur, cum se binario superarent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:3)
j vij xviij xxxiiij lv. Novem vero angulorum secundum eundem ordinem forma procreatur ita, ut secundum aequalem progressionem primi quoque eorum numeri distent.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:4)
in tetragono vero, qui secundus est, duobus sese iuncti numeri vincunt, et in pentagono tribus et in exagono iiij et in eptagono quinque, huiusque rei nullus est modus.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:6)
Quattuor enim tetragonus fit ex uno et tribus, id est ex duobus superioribus triangulis;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:3)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)
Nam quinarius pentagonus ex quaternario super se posito tetragono et ex uno, qui in triangulorum ordine ponitur, adgregatur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:8)
At vero si exagonos librata examinatione perspicias, ex eisdem triangulis et super se positispentagonis procreantur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:12)
Namque ex super se exagonis et ex eminus positis triangulis procreantur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:18)
Hi vero omnes, si ad latitudinem fuerint comparati, id est trianguli tetragonis vel tetragoni pentagonis vel pentagoni exagonis vel hi rursus eptagonis, sine aliqua dubitatione triangulis sese superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:1)
Nam si ternarium triangulum quaternario, vel quaternarium tetragonum quinario, vel quinarium pentagonum senario exagono, vel senarium septenario eptagono compares, primo se triangulo, id est sola transeunt unitate.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:2)

SEARCH

MENU NAVIGATION