라틴어 문장 검색

Nunc autem nobis de his numeris sermo futurus est, qui circa figuras geometricas et earum spatia demensionesque versantur, id est de linearibus numeris et de triangularibus vel quadratis ceterisque, quos sola pandit plana demensio, nec non de inaequali laterum compositione coniunctis;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:4)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
arithmetica, geometrica, armonica.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:2)
apparuit, arithmeticam vim geometrica atque musica esse antiquiorem et quod inlata non has simul inferret, sublata vero perimeret.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:2)
Qualitas autem proportionis eadem non erit, quamvis sint aequis termini differentiis distributi.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:3)
Nunc vero quae hanc sequitur, geometrica medietas expediatur, quae sola vel maxime proportionalitas appellari potest propterea quod in eisdem proportionibus terminorum vel in maioribus vel in minoribus speculatio ponitur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:1)
In his enim, quotlibet terminos sumpseris, explebunt geometricam medietatem, quemadmodum enim prior ad sequentem est, ita sequens ad alium, et rursus, si permixte facias, idem erit.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:3)
Illic enim in omnibus vel multiplicibus vel superpartientibus vel superparticularibus vel in ceteris coniunctis geometrica proportionalitas custoditur has omnes proprietates, quas supra diximus, continens.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:5)
Geometrica medietas popularis quodammodo et exaequatae civitatis est. Namque vel in maioribus vel in minoribus aequali omnium proportionalitate componitur, et est inter omnes paritas quaedam medietatis aequum ius in proportionibus conservantis.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:2)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
Si vero fuerint cybi, duas tantum habebunt medietates, ubi tertia inveniri non poterit secundum geometricam scilicet proportionem;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:5)
Iuste igitur medietas quaedam geometrica proprieque esse proportionalitas iudicatur, scilicet inter eam, ubi in maioribus terminis minor est proportio et in minoribus maior, et inter eam, ubi in maioribus maior est, in minoribus minor.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:6)
Hoc quoque signum est duarum extremitatum mediam esse quodammodo geometricam proportionem.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:8)

SEARCH

MENU NAVIGATION