라틴어 문장 검색

Nam et ea, quae de numeris a Nichomacho diffusius disputata sunt, moderata brevitate collegi et quae transcursa velocius angustiorem intellegentiae praestabant aditum mediocri adiectione reseravi, ut aliquando ad evidentiam rerum nostris etiam formulis ac descriptionibus uteremur.
(보이티우스, De Arithmetica, Prefationes, Praefatio Boetii 3:4)
Hace autem sunt qalitates, quantitates, formae, magnitudines, parvitates, aequalitates, habitudines, actus, dispositiones, loca, tempora et quicquid adunatum quodammodo corporisbus invenitur, quae ipsa quidem natura incorporea sunt et inmutabili substantiae ratione vigentia, participatione vero corporis permutantur et tactu variabilis rei in vertibilem inconstantiam transeunt Haec igitur quoniam, ut dictum est, natura inmutabilem substantiam vimque sortita sunt, vere proprieque esse dicuntur.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:4)
Hoc igitur illud quadruvium est, quo his viandum sit, quibus excellentior animus a nobiscum procreatis sensibus ad intellegentiae certiora perducitur.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:17)
Quae igitur ex hisce prima discenda est nisi ea, quae principium matrisque quodammodo ad ceteras obtinet portionem?
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:19)
Secundus autem vocatur hic numerus, quoniam non sola unitate metitur sed etiam alio numero, a quo scilicet coniunctus est, neque habet quicquam in se principalis intellegentiae.
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 3:1)
Illi enim inmoderata quodammodo plenitudine proprii corporis modum partium suarum numerositate praecedunt;
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:4)
Hoc autem erit perspicuum, si intellegamus, omnes inaequalitatis species ab aequalitatis crevisse primordiis, ut ipsa quodammodo aequalitas matris et radicis obtinens vim ipsa omnes inaequalitatis species ordinesque profundat.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:4)
Amat enim quodammodo matheseos speculatio alterna probationum ratione constitui.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:3)
Si huic igitur triangulo per tres angulos erigantur lineae et ad unum punctum convertantur, quod est d, ita ut d punctum non sit in plano, sed pendens, illae scilicet lineae ad ipsum erectae verticem et quodammodo cacumen d facient et erit basis a b c unum triangulum, per latera vero tria triangula, id est unum triangulum a d b, aliud vero b d c, tertium c d a.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:6)
In hac igitur coniunctione necesse est, ut semper, qui ultimus est coniugatorum numerorum, is quasi quodammodo basis sit. Cunctis enim latior invenitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:1)
Et qui ante ipsum numeri coniungantur, minores esse necesse est, usque dum ad unitatem detractio rata perveniat, quae puncti quodammodo et verticis obtineat locum.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:2)
Est ergo princeps inparis ordinis unitas, quae ipsa quidem effectrix et quodammodo forma quaedam est inparitatis, quae in tantum eiusdem nec mutabilis substantiae est, ut, cum vel se ipsa multiplicaverit vel in planitudine vel in profunditate, vel si alium quemlibet numerum per se ipsa multiplicet, a prioris quantitatis forma non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:1)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Quodammodo enim longitudine in prolixiorem modum porrecta merito anteriore parte longior dicitur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:12)
Parte altera vero longiores, quod non eadem longitudine tendantur, alterius quodammodo longitudinis et parte altera longiores vocantur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:14)

SEARCH

MENU NAVIGATION