라틴어 문장 검색

Convergit autem series infinita ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra progredi quam ad terminum secundum E. Et fundatur calculus in hoc Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab umbilico S in Radium CQ perpendiculariter demissam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:21)
) & L ipsius latere recto, quaere tum angulum Y, cujus Tangens sit ad Radium ut est semiaxium differentia AO - OD ad eorum summam AO + OD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:5)
tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)
& angulum V (primam medii motus aequationem) ad angulum Y (aequationem maximam primam) ut est sinus anguli T duplicati ad radium; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:9)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae locorum a centro, spatia definire quae corpus recta cadendo datis temporibus describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 3:1)
Iisdem positis, dico quod area figurae DES, radio indefinito SD descripta, aequalis sit areae quam corpus, radio dimidium lateris recti figurae DES aequante, circa centrum S uniformiter gyrando, eodem tempore describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 18:1)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
Posito quod vis centripeta proportionalis sit altitudini seu distantiae locorum a centro, dico quod cadentium tempora, velocitates & spatia descripta sunt arcubus arcuumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 33:1)
generis vi centripeta, & concessis figurarum curvilinearum quadraturis, requiritur corporis recta ascendentis vel descendentis tum velocitas in locis singulis, tum tempus quo corpus ad locum quemvis perveniet:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 39:2)
loco ejus E erigatur semper perpendicularis EG, vi centripetae in loco illo ad centrum C tendenti proportionalis: Sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:2)
& si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V^2, & area ABGE ut V^2 + 2VI + I^2, & divisim area DFGE ut 2VI + I^2, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:3)
Si P sit locus de quo corpus cadere debet, ut, urgente aliqua uniformi ui centripeta nota (qualis vulgo supponitur gravitas) velocitatem acquirat in loco D aequalem velocitati quam corpus aliud vi quacunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:2)
D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetae, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 45:3)
centripeta, moveatur utcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 2:2)
Quoniam distantiae CD, CI aequantur, erunt vires centripetae in D & I aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:7)

SEARCH

MENU NAVIGATION