라틴어 문장 검색

post unam oscillationem ad punctum V. Est RV retardatio ex resistentia aeris.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:10)
Nam velocitatem Penduli in puncto infimo esse ut chorda arcus quem cadendo descripsit, Propositio est Geometris notissima.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:15)
Tollatur corpus B & inveniatur locus v, a quo si corpus A demittatur & post unam oscillationem redeat ad locum r, sit st pars quarta ipsius rv sita in medio, & per chordam arcus tA exponatur velocitas quam corpus A proxime post reflexionem habuit in loco A. Nam t erit locus ille verus & correctus ad quem corpus A, sublata aeris resistentia, ascendere debuisset.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:17)
Hoc modo in Pendulis pedum decem rem tentando, idq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:25)
Difficile erat tum pendula simul demittere sic, ut corpora in se mutuo impingerent in loco infimo AB, tum loca s, k, notare ad quae corpora ascendebant post concursum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:39)
Primum demittendo Pendula & mensurando reflexionem, inveni quantitatem vis Elasticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:10)
Datum pondus data vi movendi, aliamve datam resistentiam vi data superandi.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:3)
Nam si Machinae ita formentur ut velocitates Agentis & Resistentis sint reciproce ut vires, Agens resistentiam sustinebit, & majori cum velocitatum disparitate eandem vincet.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:4)
Certe si tanta sit velocitatum disparitas ut vincatur etiam resistentia omnis, quae tam ex contiguorum & inter se labentium corporum attritione, quam ex continuorum & ab invicem separandorum cohaesione & elevandorum ponderibus oriri solet;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:5)
superata omni ea resistentia, vis redundans accelerationem motus sibi proportionalem, partim in partibus Machinae, partim in corpore resistente producet.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:6)
Facere ut Corpus pendulum oscilletur in Cycloide data.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 23:1)
Centro C intervallo CA describatur Globus exterior ABD, & intra hunc globum Rota, cujus diameter sit AO, describantur duae semicycloides AQ, AS, quae globum interiorem tangant in Q & S & globo exteriori occurrant in A. A puncto illo A, filo APT longitudinem AR aequante, pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:3)
) resolvitur in partes CX, TX, quarum CX impellendo corpus directe a P distendit filum PT & per cujus resistentiam tota cessat, nullum alium edens effectum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:3)
Pendulis igitur duabus APT, Apt de perpendiculo AR inaequaliter deductis & simul dimissis, accelerationes eorum semper erunt ut arcus describendi TR, tR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:8)
perpendiculi latus jacentes sint similes & aequales, pendula duo oscillationes suas tam totas quam dimidias iisdem temporibus semper peragent. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:18)

SEARCH

MENU NAVIGATION