라틴어 문장 검색

eaeque quam latae fuerint, tantam altitudinem habeant ad imam curvaturam hemisphaerii.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 10장26)
mediumque lumen in hemisphaerio relinquatur, ex eoque clipeum aeneum catenis pendeat, per cuius reductiones et demissiones perficietur sudationis temperatura.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 10장27)
scaphen sive hemisphaerium Aristarchus Samius, idem etiam discum in planitia;
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 8장2)
Verum ob motum Terrae, quo Sol in antecedentia motu apparente transfertur, Luna, priusquam Solem assequitur, describit angulum CSa angulo recto majorem in ratione revolutionis Lunaris Synodicae ad revolutionem periodicam, id est in ratione 29 d. 12 h. 44'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:13)
vel (quod eodem fere recidit) ut angulus CSp sit ad angulum CSP ut tempus revolutionis Synodicae Lunaris ad tempus revolutionis Periodicae seu 29 d. 12. h.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:4)
Ut si axis orbis Cometae sit quadruplo major axe orbis Saturni, tempus revolutionis Cometae erit ad tempus revolutionis Saturni, id est ad annos 30, ut 4[sqrt]4 (seu 8) ad 1, ideoque erit annorum 240.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 24:4)
Verum percurrendo historias Cometarum reperi quod quadruplo vel quintuplo plures detecti sunt in Hemisphaerio Solem versus, quàm in Hemisphaerio opposito, praeter alios procul dubio non paucos quos lux Solaris obtexit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 19:5)
& hinc errores angulares e centro S spectati (id est tam motus Augis & Nodorum, quam omnes in longitudinem & latitudinem errores apparentes) sunt in qualibet revolutione corporis P, ut quadratum temporis revolutionis quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 68:10)
& propterea corpus de Apside summa discedens & subinde perpetuo descendens, perveniet ad Apsidem imam ubi complevit revolutionem integram, dein perpetuo ascensu complendo aliam revolutionem integram, redibit ad Apsidem summam:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:32)
& affluxus posterior in f erit minor quàm affluxus prior in F. Distinguitur enim Mare totum in duos omnino fluctus Hemisphaericos, unum in Hemisphaerio KHkC ad Boream vergentem, alterum in Hemisphaerio opposito KhkC;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:22)
& pone tempus revolutionis hujus esse ad summam hujus temporis & temporis revolutionis globi, ut quadratum semidiametri vasis ad quadratum semidiametri globi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 27:4)
AEquationes maximae Nodorum & Augis Satellitis cujusque fere sunt ad aequationes maximas Nodorum & Augis Lunae respectivè, ut motus Nodorum & Augis Satellitum, tempore unius revolutionis aequationum priorum, ad motus Nodorum & Apogaei Lunae tempore unius revolutionis aequationum posteriorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 10:10)
describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:4)
Nam revolutiones Planetarum circumjovialium circa Jovem, & Mercurii ac Veneris reliquorumque circumsolarium circa Solem sunt Phaenomena ejusdem generis cum revolutione Lunae circa Terram;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 16:1)

SEARCH

MENU NAVIGATION