라틴어 문장 검색

id est, sector nascens ASp ad sectorem nascentem GCf ut AO × OD ad CGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:13)
adeo ut Cycloidum perimetri & perimetrorum partes similes, aequalia erunt tempora quibus perimetrorum partes similes Oscillationibus similibus describuntur, & propterea Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:3)
ea in perimetro HIK aequalis vi centripetae in perimetro globi QOS (Vide Fig. Prop. L. & LI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:3)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
Et componendo fit summa particularum temporis, quibus omnes velocitatis AP particulae PQ generantur, ut summa particularum Sectoris ADT, id est tempus totum ut Sector totus. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:27)
quoniam earum perimetri sunt ut semidiametri globorum & vires in analogis perimetrorum locis sunt ut distantiae locorum a communi globorum centro, hoc est ut globorum semidiametri, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:2)
erit tempus omne ascensus futuri ut sector Circuli, & tempus omne descensus praeteriti ut sector Hyperbolae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 47:2)
& Sector Hyperbolicus ATD ut tempus descensus omnis praeteriti, si modo Sectorem tangentes Ap & AP sint velocitates.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:4)
Igitur si tempus, quo Sol absque motu Nodi percurreret arcum NA, exponatur per Sectorem NTA, & particula temporis quo percurreret arcum quam minimum Aa, exponatur per Sectoris particulam ATa;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:15)
hoc est si capiantur datae quantitates F, G in ea ratione ad invicem quam habet angulus VCP ad angulum VCp, ut Gq. - Fq. ad Fq. Et propterea, si centro C intervallo quovis CP vel Cp describatur Sector circularis aequalis areae toti VPC, quam corpus P tempore quovis in orbe immobili revolvens radio ad centrum ducto descripsit, differentia virium, quibus corpus P in orbe immobili & corpus p in orbe mobili revolvuntur, erit ad vim centripetam qua corpus aliquod radio ad centrum ducto Sectorem illum, eodem tempore quo descripta sit area VPC, uniformiter describere potuisset, ut Gq. - Fq. ad Fq. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 7:3)

SEARCH

MENU NAVIGATION