라틴어 문장 검색

(per Leg. I.) Et vis illa qua corpus de cursu rectilineo detorquetur & cogitur triangula quam minima SAB, SBC, SCD &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 9:3)
Quoniam aequabilis arearum descriptio Index est centri quod vis illa respicit qua corpus maxime afficitur, corpus autem vi ad hoc centrum tendente retinetur in orbita sua, & motus omnis circularis recte dicitur circa centrum illud fieri, cujus vi corpus retrahitur de motu rectilineo & retinetur in Orbita:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 21:1)
Habitis autem duobus locis rectilineis, habetur punctum quaesitum Z in earum intersectione, Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:13)
Si duae ex tribus lineis, puta AZ & BZ aequantur, punctum Z locabitur in perpendiculo bisecante distantiam AB, & locus alius rectilineus invenietur ut supra. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 28:2)
Nomen Conicae sectionis in hoc Lemmate late sumitur, ita ut sectio tam rectilinea per verticem Coni transiens, quam circularis basi parallela includatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 15:1)
Revolvatur tum angulus magnitudine datus CBH circa polum B, tum radius quilibet rectilineus & utrinq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 53:1)
Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum intersectiones transferre, & per easdem in figura nova lineas rectas ducere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:1)
resolvatur in duas NT & IT, vis NT, agendo secundum lineam NT corporis cursui ITK perpendicularem, nil mutabit velocitatem corporis in cursu illo, sed retrahet solummodo corpus a cursu rectilineo, facietq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:10)
Corpus eo non retardatur, non acceleratur, sed tantum cogitur de cursu rectilineo discedere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 5:8)
Addatur vis in centrum C, cubo altitudinis CP vel Cp reciproce proportionalis, & (per jam demonstrata) detorquebitur motus ille rectilineus in lineam curvam Vpk.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 13:5)
Hinc si corpus T filo rectilineo AT a centro A pendens, describat arcum circularem STRQ, & interea urgeatur secundum lineas parallelas deorsum a vi aliqua, quae sit ad vim uniformem gravitatis, ut arcus TR ad ejus sinum TN:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 46:2)
5) ut & Globi de cursa rectilineo uniformiter tracti (per Legum Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 71:9)
Iisdem positis, dico quod corpusculum extra Sphaericam superficiem constitutum attrahitur ad centrum Sphaerae, vi reciproce proportionali quadrato distantiae suae ab eodem centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 6:1)
dico quod vis qua corpusculum attrahitur proportionalis erit semi-diametro Sphaerae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 10:2)
Sed particulae sunt ut Sphaerae, hoc est in ratione triplicata diametrorum, & distantiae sunt ut diametri, & ratio prior directe una cum ratione posteriore bis inverse est ratio diametri ad diametrum. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:3)

SEARCH

MENU NAVIGATION