라틴어 문장 검색

vel (quod perinde est) ut sit rectangulum sub DA & DP ad rectangulum sub AC & CP ut resistentia tota sub initio motus ad vim Gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:3)
Et cum resistentia sit ut motus, distinguetur etiam haec in partes duas partibus motus proportionales & contrarias:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:4)
Hinc si vertice D, Diametro DE deorsum producta, & latere recto quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis, Parabola construatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:2)
hoc est ut resistentia ad gravitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:17)
& resistentia Medii ipso motus initio detur, inveniri potest Curva DraF, quam corpus idem describet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:3)
Et sumendo 2DP ad latus illud rectum ut est vis Gravitatis ad vim resistentiae, datur DP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:5)
Dein secando DC in A, ut sit CP × AC ad DP × DA in eadem illa ratione Gravitatis ad resistentiam, dabitur punctum A. Et inde datur Curva DraF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:6)
Et contra, si datur curva DraF, dabitur & velocitas corporis & resistentia Medii in locis singulis r.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 31:2)
Nam ex data ratione CP × AC ad DP × DA, datur tum resistentia Medii sub initio motus, tum latus rectum Parabolae:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 31:3)
Deinde ex longitudine tangentis rL, datur & huic proportionalis velocitas, & velocitati proportionalis resistentia in loco quovis r.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 31:5)
Cum autem longitudo 2DP sit ad latus rectum Parabolae ut gravitas ad resistentiam in D;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 32:2)
& ex aucta Velocitate augeatur resistentia in eadem ratione, at latus rectum Parabolae augeatur in ratione illa duplicata:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 32:3)
Unde liquet methodus determinandi Curvam DraF ex Phaenomenis quamproxime, & inde colligendi resistentiam & velocitatem quacum corpus projicitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:2)
longitudine pro DP vel Dp, fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, & exponatur ratio illa per longitudinem quamvis SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:5)
Idem fac iterum ac tertio, assumendo semper novam resistentiae ad gravitatem rationem SM, & colligendo novam differentiam MN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:7)

SEARCH

MENU NAVIGATION