라틴어 문장 검색

Hi vero idcirco a ternario numero inchoant, quod latitudinis et superficiei solus ternarius principium est. In geometria quoque idem planius invenitur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:2)
Adeo haec figura princeps est latitudinis, ut ceterae omnes superficies in hanc resolvantur, ipsa vero, quoniam nullis est principiis obnoxia neque ab alia latitudine sumpsit initium, in sese ipsam solvatur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:10)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Nam in triangulo qui sunt numeri, quae prima superficiei figura est, uno sese tantum numeri praecedunt, qui scilicet, eorum naturam descriptionemque perficiunt;
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:5)
Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)
nunc vero ad solidorum corporum procreationem ipsae nobis superficies naturaliter figuratae provenient.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:4)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Nam si tetragona fuerit basis, quadrata deminutione semper ascendit, et si pentagona basis, similiter, et si exagona, illa quoque ultima superficies erit exagona.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:6)
Ergo in curta pyramide tot erit angulorum superficies, quot fuerit basis.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:7)
Ac de solidis quidem, quae pyramidis formam obtinent, aequaliter crescentibus et a propria velut radice multiangula figura progredientibus dictum est. Est alia rursus quaedam corporum solidorum ordinabilis compositio, eorum qui dicuntur cybi vel asseres vel laterculi vel cunei vel spherae vel parallelepipeda, quae sunt, quotiens superficies contra se sunt, et ductae in infinitum nunquam concurrent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:1)
Omnis enim tetragonus una quidem superficies est quattuor angulorum, totidemque laterum.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:16)
Omnis enim cybus habet latera xij angulos viij superficies vj. Hic autem ordo et dispositio armonica est. Disponantur enim vj viij xij. Hic ergo quemadmodum est maior terminus ad parvissimum, ita differentia maioris et medii ad medii ac parvissimi comparatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:4)
Quodsi, ut Aristoteles ait, Lyncei oculis homines uterentur, ut eorum uisus obstantia penetraret, nonne introspectis uisceribus illud Alcibiadis superficie pulcherrimum corpus turpissimum uideretur?
(보이티우스, De philosophiae consolatione, Liber Tertius, XV 1:19)
ut quod circa quemlibet punctum signatum in superficie sunt quattuor recti anguli possibiles, habeat veritatem, naturalis ex suis principiis causare non potest, nec tamen debet eam negare, quia non contrariatur suis principiis, nec destruit suam scientiam.
(Boethius De Dacia, DE MUNDI AETERNITATE, 7 52:2)

SEARCH

MENU NAVIGATION