라틴어 문장 검색

Tetragonus xlviiij sesquisexta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 35:1)
Sint enim duo tetragoni iiij scilicet et viiij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:9)
Hoc autem idcirco evenit, quod singula latera singulorum tetragonorum efficiunt senariam medietatem.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:12)
Nam quaternarii tetragoni latus binarius est, novenarii ternarius.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:13)
bis enim iij senarius est. Et quotienscunque datis duobus tetragonis eorum medietatem volumus invenire, latera eorum multiplicanda sunt, et qui ex his procreabitur, medietas est. Si autem cybi sunt, ut viij et xxvij, duae tantum inter hos eadem proportione medietates constitui queunt, xij scilicet et xviij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:15)
segmenta et longos habitus et flammea sumit arcano qui sacra ferens nutantia loro sudavit clupeis ancilibus.
(유베날리스, 풍자, 1권, Satura II70)
erunt areae ultimae curvilineae ADB, Adb (ex natura Parabolae) duae tertiae partes triangulorum rectilineorum ADB, Adb, & segmenta AB, Ab partes tertiae eorundem triangulorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:3)
Et inde hae areae & haec segmenta erunt in triplicata ratione tum tangentium AD, Ad;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:4)
Jam ob similia triangula Pxv, MSP & aequalia unius latera SM, SP, aequalia sunt alterius latera Px seu QR & Pv. Sed, ex Conicis, quadratum ordinatae Qv aequale est rectangulo sub latere recto & segmento diametri Pv, id est (per Lem. XIII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 23:3)
dico quod sectionis semidiameter hisce duabus parallela, sit media proportionalis inter harum segmenta, punctis contactum & tangenti tertiae interjecta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 82:3)
Super DE, DF & EF describe tria circulorum segmenta DRE, DGF, EMF, quae capiant angulos angulis BAC, ABC, ACB aequales respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 108:2)
Describantur autem haec segmenta ad eas partes linearum DE, DF, EF ut literae DRED eodem ordine cum literis BACB, literae DGFD eodem cum literis ABCA, & literae EMFE eodem cum literis ACBA in orbem redeant:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 108:3)
deinde compleantur haec [Pictura] segmenta in circulos.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 108:4)
Jungatur FH, & super FG, FH, FI describantur totidem circulorum segmenta FSG, FTH, FVI;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 119:4)
Describi autem debent segmenta ad eas partes linearum FG, FH, FI, ut literarum FSGF idem sit ordo circularis qui literarum BADB, utq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 119:7)

SEARCH

MENU NAVIGATION