라틴어 문장 검색

Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
Tetragonum, pentagonum, exagonumque cum notatis
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 1:1)
prima pyramis de triangulo, secunda pyramis de tetragono, tertia pyramis de pentagono, quarta pyramis de exagono, quinta pyramis de eptagono, idemque in ceteris constat numeris.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:2)
nunc vero ad solidorum corporum procreationem ipsae nobis superficies naturaliter figuratae provenient.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:4)
Descriptis enim cunctis tetragonis, id est j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c, si unitatem primam ex hac dispositione praesumam, erit mihi potestate et vi pyramis ipsa unitas, nondum etiam opere atque actu.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:6)
At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Atque huic si sequentem tetragonum xvj superponam, tricenaria mihi pyramidis forma producitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:9)
Tetragoni j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 5:1)
Pyramides a tetragonis j v xiiij xxx lv xcj cxl cciiij cclxxxv ccclxxxv
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 6:1)
Haec autem est, ut si quis xvj tetragono adiciat viiij atque huic iiij et ab ulterioris sese unitatis adiectione suspendat.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:4)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Ergo in curta pyramide tot erit angulorum superficies, quot fuerit basis.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:7)
ut si a xvj tetragono proficiscens usque in novem terminum ponat neque excrescat ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:9)
Et quotcunque tetragoni defuerint, totiens eam curtam esse dicemus;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:10)

SEARCH

MENU NAVIGATION