라틴어 문장 검색

At vero si senarius contra novenarium, vel hic contra xij, vel hic contra xv, vel quindecim contra x et viij, pro inveniendis differentiis comparentur, secundo se triangulo, id est ternario superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:3)
X vero ad xvj et xvj ad xxij et xxij ad xxviij et xxviij ad xxxiiij si componas, tertio se triangulo vincent, id est senario.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:4)
Atque hoc rite notabitur in aliis cunctis sequentibus sese perspectum omnesque se triangulis antecedent.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:5)
Quare perfecte, ut arbitror, demonstratum est, omnium formarum principium elementumque esse triangulum.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:6)
Triangulum cum notatis
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 1:1)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
Sit a b c triangulum.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:5)
et quantoscunque angulos habuerit figura, super quam pyramis residet, tot ipsa per latera triangulis continetur, ut ex subiectis descriptionibus palam est.
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:2)
prima pyramis de triangulo, secunda pyramis de tetragono, tertia pyramis de pentagono, quarta pyramis de exagono, quinta pyramis de eptagono, idemque in ceteris constat numeris.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:2)
Primus ergo potestate triangulus est unitas eandemque etiam ponimus virtute pyramidam;
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:9)
secundus vero triangulus est ternarius, quem si cum primo coniunxero, id est cum unitate, quaternaria mihi profunditas pyramidis excrescit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:10)
Trianguli j iij vj x xv xxj xxviij xxxvj xlv lv
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 2:1)
Pyramides a triangulis j iiij x xx xxxv lvj lxxiiij cxx clxv ccxx
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 3:1)
Hic enim ex uno et duobus et inpari atque pari coniungitur, quae manifesta sunt aequalitatis atque inaequalitatis, eiusdem atque alterius, definitae atque indefinitae esse substantiae.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:13)

SEARCH

MENU NAVIGATION