라틴어 문장 검색

) & si HP occurrat Ellipsi in P, acta SP abscindet aream BSP tempori proportionalem quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:13)
Invento autem angulo motus medii aequati BHP, angulus veri motus HSP & distantia SP in promptu sunt per methodum notissimam Dris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:15)
× AO × SP ÷ ACB ad SY quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:13)
× AO × SP ÷ ACB aequale est BQq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:17)
× AC × SP ÷ {AO × BC}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:18)
S cum puncto B, & linea SP cum linea BC, lineaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:20)
× AC × SP ÷ {AO × BC} ad SYq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:23)
hoc est (neglectis aequalitatis rationibus SP ad BC & BQq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:24)
VIII) aequalis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:3)
Minuatur Parabolae latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP coincidat, & constabit Propositio. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 16:4)
id adeo quia proportiones linearum SC, CP & SP vel sp ad invicem dantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 7:7)
Et ob similitudinem figurarum CPRQ, sprq, erit RQ ad rq ut CP ad sp, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:6)
Ponatur igitur velocitas corporis p esse ad velocitatem corporis P in dimidiata ratione distantiae sp ad distantiam CP, eo ut temporibus quae sint in eadem dimidiata ratione describantur arcus PQ, pq, qui sunt in ratione integra:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:16)
ex demonstratione superioris Propositionis, tempora quibus arcus quivis similes PQ & pq describuntur, sunt in dimidiata ratione distantiarum CP & SP vel sp, hoc est, in dimidiata ratione corporis S ad summam corporum S + P. Et componendo, summae temporum quibus arcus omnes similes PQ & pq describuntur, hoc est tempora tota quibus figurae totae similes describuntur, sunt in eadem dimidiata ratione. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 16:2)
adeo quae faciet ut corpus P, radio SP, areas non amplius temporibus proportionales describet, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:25)

SEARCH

MENU NAVIGATION