라틴어 문장 검색

Postea Globum plumbeum, diametro digitorum duorum & pondere unciarum Romanarum 26¼ suspendi filo eodem, sic ut inter centrum Globi & punctum suspensionis intervallum esset pedum 10½, & numerabam oscillationes quibus data motus pars amitteretur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 85:1)
Et inde prodit resistentia Globi cum velocitate V moventis, in ea ratione ad pondus suum unciarum 26¼, quam habet 0,000923V + 0,000172V^{3/2} + 0,000675V^2 ad Penduli longitudinem 121 digitorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:5)
Longitudo penduli inter punctum suspensionis & centrum oscillationis erat digitorum 122¾ inter punctum suspensionis & nodum in filo 109½ dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:2)
Ergo si pendulum describeret arcum totum 124-3/31 digitorum, & longitudo ejus inter punctum suspensionis & centrum oscillationis esset 126 digitorum, differentia arcuum descensu & subsequente ascensu descriptorum foret 1,509 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:15)
Arcam ligneam paravi longitudine pedum quatuor, latitudine & altitudine pedis unius.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 91:2)
Globus autem plumbeus pondere 166-1/6 unciarum, diametro 3-5/8 digitorum, movebatur ut in Tabula sequente descripsimus, existente videlicet longitudine penduli a puncto suspensionis ad punctum quoddam in filo notatum 126 digitorum, ad oscillationis autem centrum 134-1/8 digitorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 91:4)
Longitudo fili ferrei erat pedum quasi trium, & diameter Globi penduli quasi tertia pars digiti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 102:2)
Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui pars 1/3261, interea dum longitudinem semidiametri suae describat (ut jam ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquae ut 800 vel 850 ad 1 circiter, consequens est ut haec Regula generaliter obtineat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:1)
Si corpus quodlibet Sphaericum in Medio quocunque satis Fluido moveatur, & spectetur resistentiae pars illa sola quae est in duplicata ratione velocitatis, haec pars erit ad vim quae totum corporis motum, interea dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo uniformiter continuato describat, vel tollere posset vel eundem generare, ut densitas Medii ad densitatem corporis quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:2)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)
Pulsus propagari concipe per successivas condensationes & rarefactiones Medii, sic ut pulsus cujusque pars densissima Sphaericam occupet superficiem circa centrum A descriptam, & inter pulsus successivos aequalia intercedant intervalla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:3)
Et quoniam Medium ibi densius est quam in spatiis hinc inde versus KL & NO, dilatabit sese tam versus spatia illa KL, NO utrinque sita, quam versus pulsuum rariora intervalla; eoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:6)
pacto rarius semper evadens e regione intervallorum ac densius e regione pulsuum, participabit eorundem motum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:7)
Et quoniam pulsuum progressivus motus oritur a perpetua relaxatione partium densiorum versus antecedentia intervalla rariora;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:8)
idque aequalibus circiter ab invicem distantiis, ob aequalia temporis intervalla, quibus corpus tremoribus suis singulis singulos pulsus excitat. Q. E. D. Et quanquam corporis tremuli partes eant & redeant secundum plagam aliquam certam & determinatam, tamen pulsus inde per Medium propagati sese dilatabunt ad latera, per Propositionem praecedentem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:11)

SEARCH

MENU NAVIGATION