라틴어 문장 검색

At si lineola illa minuatur in infinitum, termini subsequentes evadent infinite minores tertio, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:11)
Hallucinantur igitur qui credunt resistentiam projectilium per infinitam divisionem partium Fluidi in infinitum diminui.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 62:2)
Nam globi singuli, eadem ratione qua unus aliquis motum suum propagat in infinitum, propagabunt etiam motus suos in infinitum, adeò ut fluidi infiniti pars unaquaeque eo agitetur motu qui ex omnium globorum actionibus resultat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 24:3)
Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)
habebitur series angulorum contactus pergens in infinitum, quorum quilibet posterior est infinite minor priore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:7)
Si Cylindrus solidus infinitè longus in fluido uniformi & infinito circa axem positione datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur Fluidum in Orbem, perseveret autem fluidi pars unaquaeque uniformiter in motu suo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 4:1)
Infinitos itaque praedicari oportet deos, ut infinitam ejus gloriam magnificemus, praesertim cum nulla sit ratio, qua ad certum numerum aliquem ea reduci queat.
(피에르 아벨라르, Theologia scholarium, Liber tertius 9:3)
Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & aequatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:8)
De corpore ex particulis constante, quarum vires attractivae decrescunt in ratione potestatis triplicatae distantiarum, assertio non valet, propterea quod, in hoc casu, attractio partis illius ulterioris corporis infiniti in Corollario secundo, semper est infinite major quam attractio partis citerioris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 51:4)
nam quamvis funditus omnis summa sit infinita, tamen, parvissima quae sunt, ex infinitis constabunt partibus aeque.
(루크레티우스, 사물의 본성에 관하여, Liber Primus 16:7)
innotescit ejus vis attractiva, subducendo de vi attractiva solidi totius infiniti LGKO vim attractivam partis ulterioris NIKO, in infinitum versus KO productae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 49:4)
habebitur alia series infinita angulorum contactus, quorum primus est ejusdem generis cum circularibus, secundus infinite major, & quilibet posterior infinite major priore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:9)
Cum autem naturaliter multiplicitas et submultiplicitas infinita sit, eorum quoque species per proprias generationes in infinita consideratione versantur.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:1)
in infinitum pergens angulorum intermediorum inseri, quorum quilibet posterior erit infinite major priore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:11)
Item, si mundus esset aeternus, tunc motus infinitus esset pertransitus et infinitum tempus, quia, si mundus esset aeternus, tunc tempus praecedens hoc instans esset infinitum;
(Boethius De Dacia, DE MUNDI AETERNITATE, 2 11:1)

SEARCH

MENU NAVIGATION