라틴어 문장 검색

Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)
Vel si eam proportionem, quam inter se dati termini custodiunt, dividas et id quod relinquitur medium terminum ponas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:14)
Si autem inpares terminos ponamus, id est summas -- idem enim terminos quod summas nomino -- secundum inparis naturam potest una medietas inveniri atque ipsa una sibi est responsura.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:1)
et minorum terminorum proportio maior est illa comparatione, quae inter maiores terminos continetur;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:11)
hujus termino in quo O duarum est dimensionum, id est termino {mm - mn} ÷ 2nn O^2 A^{(m - 2n)÷n} vim proportionalem esse suppono.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:2)
Quo tempore vapor à capite ad terminum caudae ascendit, cognosci fere potest ducendo rectam à termino caudae ad Solem, & notando locum ubi recta illa Trajectoriam secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 49:1)
utrum illa corpora quae sunt termini motus disponant vel alterent corpora media, ut per successionem et tactum verum labatur virtus a termino ad terminum, et interim subsistat in corpore medio;
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 369:9)
sin vero sint triplices proportiones maior terminus a minore termino duplicato minore termino differt, ut, si sint j iij viiij, tres ab uno binario differunt, in quem unitas, id est minor terminus duplicatus exundat;
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:5)
Differentiam terminorum in minorem terminum multiplica et post iunge terminos, et iuxta eum, qui inde confectus est, committe illum numerum, qui ex differentiis et termino minore productus est, cuius cum latitudinem inveneris, addis eam minori termino, et quod exinde colligitur, medium terminum pones.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:17)
Cum regi Bulgarorum legati sui, quid egerint, renuntiassent, iterum eum, quem primo miserat, ad imperatorem cum litteris remisit, rogans, ut sine morarum interpositione terminorum definitio fieret vel, si hoc non placeret, suos quisque terminos sine pacis foedere tueretur.
(ANNALES REGNI FRANCORUM (ANNALES LAURISSENSES MAIORES), 826 310:2)
Si enim fuerint pares dispotiiones secundum naturam paris duos in medio terminos continebunt, ut in ea dispositione numerorum, in qua extremus terminus cxxviij finitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:3)
Habet autem proprium huiusmodi medietas, quod in omni dispositione secundum hanc proportionalitatem terminorum differentiae in eadem proportione contra se sunt, qua fuerint ipsi termini, quorum sunt ipsae differentiae.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 5:1)
Propositis enim tribus, ut dictum est, terminis aequis proportionibus ordinatis ultimum semper medio detrahamus et ipsum quidem ultimum primum terminum conlocemus, quod de medio relinquitur, secundum.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:11)
His dispositis terminis ex quadrupla propinquior aequitati proportio tripla redacta est. Sunt enim hi termini:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:3)
Proinde si ex aequali particularum numero componantur tempora quaelibet aequalia, erunt velocitates ipsis temporum initiis, ut termini in progressione continua, qui per saltum capiuntur, omisso passim aequali terminorum intermediorum numero.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:5)

SEARCH

MENU NAVIGATION