라틴어 문장 검색

× PS} ÷ {PE × V}, quae secundum Corollarium quartum Propositionis praecedentis est ut longitudo ordinatim applicatae DN, resolvet sese in tres partes
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:32)
resolvitur in vires A × GZ & A × AG, & vis B × BZ in vires B × GZ & B × BG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 15:6)
Concipe jam DPF, EPG designare Conos oppositos, angulis verticalibus DPF, EPG infinite parvis descriptos, & lineas etiam DH, EI infinite parvas esse;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:10)
ipsi GL parallela resolvatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:5)
Operationes autem contrahi solent resolvendo ordinatim applicatas in series convergentes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 54:1)
Suppono basem augeri parte quam minima O, & ordinatim applicatam {A + O}^{m÷n} resolvo in Seriem infinitam
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 54:4)
Nam concipe corpus inter plana parallela Aa, Bb, Cc &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:1)
tandem eadem obliquitate in h, qua incidit in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui & numerum augeri, eo ut actio attractionis vel impulsus secundum legem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:16)
Nam concipe lineas CP, CQ ipsis AD, DF respective, & lineas ER, ES ipsis FB, FD ubiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 27:1)
Resolvatur enim rectangulum AH in rectangula innumera Ak, Kl, Lm, Mn, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:1)
Concipe jam tempus AM ita dividi in partes AK, KL, LM, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:18)
(ut moris est) & valor ordinatim applicatae resolvatur in seriem convergentem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 67:3)
Resolvatur terminus bb ÷ {a - o} in seriem convergentem bb ÷ a + {bb ÷ aa}o + {bb ÷ a^3}oo + {bb ÷ a^4}o^3 etc.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:6)
Resolvatur terminus ille bb ÷ {A - O}^n in seriam infinitam
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 82:3)
tamen concipiendo Spiralium illarum singulas revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:3)

SEARCH

MENU NAVIGATION