라틴어 문장 검색

pendulum pedes 29042, seu digitos 348500, longum, oscillationem consimilem tempore minutorum secundorum 188-4/7 absolvere debebit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:16)
Factis autem experimentis inveni quod singulis soni recursibus pendulum quasi sex vel septem digitorum longitudinis oscillabatur, ad priorem soni recursum eundo & ad posteriorem redeundo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:25)
Quare cum longitudines Pendulorum aequalibus temporibus oscillantium sint ut gravitates, & Lutetiae Parisiorum longitudo penduli singulis minutis secundis oscillantis sit pedum trium Parisiensium & 17/24 partium digiti;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:13)
longitudines Pendulorum in Insulâ Goree, in illâ Cayennae & sub AEquatore, minutis singulis secundis oscillantium superabuntur à longitudine Penduli Parisiensis excessibus 81/1000, 89/1000 & 90/1000 partium digiti.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:14)
Jam verò Galli factis experimentis invenerunt quod Pendulorum minutis singulis secundis oscillantium longitudo Parisiis major sit quàm in Insula Goree, parte decima digiti, & major quàm Cayennae parte octava.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:20)
Sic experientiâ compertum est, quod aestus matutini tempore hyberno superent vespertinos & vespertini tempore aestivo matutinos, ad Plymuthum quidem altitudine quasi pedis unius, ad Bristoliam verò altitudine quindecim digitorum:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:29)
Unde fit ut aestus alterni ad Plymuthum & Bristoliam non multo magis differant ab invicem quàm altitudine pedis unius vel digitorum quindecim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 19:4)
Hinc cum vis centrifuga partium Terrae à diurno Terrae motu oriunda, quae est ad vim gravitatis ut 1 ad 291, efficiat ut altitudo Aquae sub AEquatore superet ejus altitudinem sub polis mensura pedum Parisiensium 85200, vis Solaris, de qua egimus, cum sit ad vim gravitatis ut 1 ad 12868200, atque adeo ad vim illam centrifugam ut 291 ad 12868200 seu 1 ad 44221, efficiet ut altitudo aquae in regionibus sub Sole & Soli oppositis superet altitudinem ejus in locis quae 90 gradibus distant à Sole, mensura tantum pedis unius Parisiensis & digitorum undecim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 42:2)
Igitur cum aqua vi Solis agitata ad altitudinem pedis unius & undecim digitorum ascendat, eadem vi Lunae ascendet ad altitudinem pedum duodecim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 46:2)
Excessus longitudinis penduli, quod in Insula Goree & in illâ Cayennae minutis singulis secundis oscillatur, supra longitudinem Penduli quod Parisiis eodem tempore oscillatur, à Gallis inventi sunt pars decima & pars octava digiti, qui tamen ex proportione 692 ad 689 prodiere 81/1000 & 89/1000.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:16)
construendo Schema satis amplum, in quo videlicet semidiameter orbis magni (partium 10000) aequalis esset digitis 16-1/3 pedis Anglicani.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 26:19)
Nam globus ferri candentis digitum unum latus, calorem suum omnem spatio horae unius in aere consistens vix amitteret.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 44:2)
ineundo, inveni quod aer, si ascendatur à superficie Terrae ad altitudinem semidiametri unius terrestris, rarior sit quàm apud nos in ratione longe majori, quàm spatii omnis infra orbem Saturni ad globum diametro digiti unius descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 48:6)
Ideoque globus aeris nostri digitum unum latus, ea cum raritate quam haberet in altitudine semidiametri unius terrestris, impleret omnes Planetarum regiones ad usque sphaeram Saturni & longe ultra.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 48:7)
Neque major esse solet caudarum plurimarum splendor, quam aeris nostri in tenebroso cubiculo latitudine digiti unius duorumve, lucem Solis in jubare reflectentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 48:15)

SEARCH

MENU NAVIGATION