라틴어 문장 검색

& corporis jam recta descendentis in linea CB velocitas fiet ad velocitatem corporis centro B interuallo BC circulum describentis, in dimidiata ratione ipsius BQq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:22)
A altitudo illa de qua corpus aliud cadere debet ut in loco D velocitatem acquirat aequalem velocitati corporis prioris in I;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 10:5)
Deinde ex longitudine tangentis rL, datur & huic proportionalis velocitas, & velocitati proportionalis resistentia in loco quovis r.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 31:5)
) incrementum resistentiae ut velocitas & incrementum velocitatis conjunctim, id est ut spatium data temporis particula descriptum & V - R conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 32:5)
sitque velocitas corporis D ad velocitatem corporis E, & velocitas corporis F ad velocitatem corporis G, in dimidiata ratione virium T ad vires V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:8)
Similiter in Trochlea seu Polyspasto vis manus funem directe trahentis, quae sit ad pondus vel directe vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem manus funem trahentis, sustinebit pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:7)
ut ½V ad I, id est, ut semissis velocitatis totius ad incrementum velocitatis corporis vi inaequabili cadentis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:7)
& similiter area PQRD ad aream DRSE ut semissis velocitatis totius ad incrementum velocitatis corporis uniformi vi cadentis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:8)
Tempore autem aucto in progressione Arithmetica, summa velocitatis illius maximae ac velocitatis in ascensu (atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 21:2)
hoc est ut velocitas corporis cadentis ad velocitatem maximam quam corpus cadendo potest acquirere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:10)
Si corpus resistitur partim in ratione velocitatis, partim in velocitatis ratione duplicata, & sola vi insita in Medio similari movetur, sumantur autem tempora in progressione Arithmetica:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 2:1)
Et si utcunque assumatur punctum R, invenietur punctum G, capiendo GD ad GR ut est velocitas sub initio ad velocitatem post spatium quodvis ABED descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 13:2)
Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:2)
Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quae fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:2)
& propterea velocitas illa aequalis erit velocitati quam Globus, perpendiculariter cadendo & casu suo describendo altitudinem arcus illius Sinui verso aequalem, acquirere posset.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 81:6)

SEARCH

MENU NAVIGATION