라틴어 문장 검색

sed non obstante pressione illa, si ejusdem sit specificae gravitatis cum aqua, quiescet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:2)
& in oscillatione una mediocri, qua arcus digitorum 3¾, 7½, 15, 30, 60, 120 descriptus fuit, differentia arcuum descensu & subsequente ascensu descriptorum, erit 1/656, 1/242, 1/69, 4/71, 8/37, 24/29 partes digiti respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 78:14)
Summa arcuum seu arcus totus oscillatione mediocri descriptus, 30 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:5)
Ejus pars decima seu differentia inter descensum & ascensum in oscillatione mediocri 2/5 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:7)
Nam gravitas undarum supplet locum vis Elasticae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:14)
Designent igitur AB, CD mediocrem altitudinem aquae in crure utroque;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 20:2)
Sed [epsilon][gamma] latitudo est seu expansio partis Medii EG in loco [epsilon][gamma], & propterea expansio partis illius in itu, est ad ejus expansionem mediocrem ut EG - LN ad EG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:6)
erit expansio partis EG in loco [epsilon][gamma] ad expansionem mediocrem quam habet in loco suo primo EG, ut {OP × BC ÷ Z} - IM ad OP × BC ÷ Z in itu, utque {OP × BC ÷ Z} + im ad OP × BC ÷ Z in reditu.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:9)
Unde si OP × BC ÷ Z dicatur V, erit expansio partis EG, punctive Physici F, ad ejus expansionem mediocrem in itu, ut V - IM ad V, in reditu ut V + im ad V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:10)
& ejusdem vis elastica ad vim suam elasticam mediocrem in itu, ut 1 ÷ {V - IM} ad 1 ÷ V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:11)
& virium differentia ad Medii vim elasticam mediocrem, ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:13)
Si figura vasis non sit Sphaerica, movebuntur particulae in lineis non circularibus sed conformibus eidem vasis figurae, & tempora periodica erunt ut quadrata mediocrium distantiarum à centro quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:10)
Planetarum quinque primariorum, & (vel Solis circa Terram vel) Terrae circa Solem tempora periodica esse in ratione sesquialtera mediocrium distantiarum à Sole.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 18:2)
& distantiae mediocres, quae temporibus periodicis respondent, non differunt sensibiliter à distantiis quas illi invenerunt, suntque inter ipsas ut plurimum intermediae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 19:6)
Planetarum ac Telluris Distantiae mediocres à Sole.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 20:1)

SEARCH

MENU NAVIGATION