라틴어 문장 검색

Gravitas igitur sub aequatore minor erit in materiam illam redundantem quàm pro computo superiore, & propterea Terra ibi propter defectum gravitatis paulò altius ascendet quàm in praecedentibus definitum est.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:19)
& propterea (si crassis hisce Observationibus satìs confidendum sit) Terra aliquanto altior erit sub aequatore quàm pro superiore calculo, & densior ad centrum quàm in fodinis prope superficiem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:22)
) in triplicata ratione diametri apparentis Solaris.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 7:3)
In minoribus enim distantiis majores sunt eorum effectus, in majoribus minores, idque in triplicata ratione diametrorum apparentium.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 15:2)
Igitur Luminaria recedendo ab aequatore polum versus effectus suos gradatim amittent, & propterea minores ciebunt aestus in Syzygiis Solstitialibus quàm in AEquinoctialibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 16:3)
& propterea distantia Lunae à Terrâ est in ratione compositâ ex dimidiatâ ratione Areae directè & dimidiatâ ratione motus horarii inversè. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 34:2)
Hinc datur Lunae diameter apparens:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 35:2)
consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
Componitur autem vis posterior PI ex viribus IT & PT, quarum PT agit secundum planum orbis Lunaris, & propterea situm plani nil mutat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:9)
Caeterum in hoc calculo & eo omni qui sequitur, considero lineas omnes à Luna ad Solem ductas tanquam parallelas lineae quae à Terra ad Solem ducitur, propterea quod inclinatio tantum ferè minuit effectus omnes in aliquibus casibus, quantum auget in aliis;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:14)
Et angulus mTl, si modo angulus Tml rectus sit, est ut ml ÷ Tm, & propterea ut IT × Pm ÷ Tm id est (ob proportionales Tm & mP, TP & PH) ut IT × PH ÷ TP, adeoque ob datam TP, ut IT × PH.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:10)
Est & AT ad PD ut AZ ad PH, & propterea PH rectangulo PD × AZ proportionalis, & conjunctis rationibus, PK × PH est ut contentum Kk × PD × AZ, & PK × PH × AZ ut Kk × PD × AZ qu.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:8)
& propterea motus mediocris quocum, si uniformiter continuaretur, spatium à se inaequabili cum motu revera confectum describere possent, est semissis motus quem habent in Syzygiis Lunae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:16)
& area PDdM conjunctim, & propterea motus horarius Nodorum in Syzygiis Lunae ut AZ qu.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:22)
Et propterea si fg esset ad ce ut fY ad cY, id est ut fr ad cR, (hoc est ut fr ad FR & FR ad cR conjunctim, id est ut fT ad FT & FG ad ce conjunctim,) quoniam ratio FG ad ce utrinque ablata relinquit rationes fg ad FG & fT ad FT, foret fg ad FG ut fT ad FT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:9)

SEARCH

MENU NAVIGATION