라틴어 문장 검색

bis enim tres senarium reddunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:9)
Nam cum vj ex binario ternarioque nascantur, tres binarium numerum uno superant, cunctique alii eiusdem modi sunt, ut primo et secundo ordine ad alterutrum multiplicatis terminis procreentur, ita ut quod nascitur ex duobus longilateris altrinsecus positis et bis medio tetragono tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:11)
Igitur post duas primas habitudines multiplices et superparticulares et eas, quae sub ipsis sunt, submultiplices et subsuperparticulares tertia inaequalitatis species invenitur, quae a nobis superius superpartiens dicta est. Haec autem est, quae fit, cum numerus ad alium comparatus habet eum totum intra se et eius insuper aliquas partes, vel duas vel tres vel iiij vel quotquot ipsa tulerit comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:1)
Hi autem sunt, qui habentur ab alio numero, et eorum vel duae vel tres vel iiij vel quotlibet aliae partes.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:2)
Si ergo numerus alium intra se numerum habens eius duas partes habuerit, superbipartiens nominatur, sin vero tres, supertripartiens, quodsi iiij, superquadripartiens, atque ita progredientibus in infinitum fingere nomina licet.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:3)
Ordo autem eorum naturalis est, quotiens disponuntur a tribus omnes pares atque inpares numeri naturaliter constituti et sub his aptantur alii, qui sunt a quinario numero incipientes omnes inpares.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:4)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
Si vero a tribus inchoent dispositiones et tribus sese transsiliant, et ad eos aptentur, qui a septenario inchoantes septenario sese numero transgrediuntur, omnes duplices sesquitertii habita diligenter comparatione nascuntur, ut subiecta descriptio monet.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 8:1)
Sin vero omnes in ordinem quadrupli disponantur, hi qui naturalis numeri quadrupli sunt, ut unitatis quadruplus, et duorum triumque et quattuor atque quinarii et ceterorum sese sequentium, et ad eos aptentur a novenario numero inchoantes semper sese novenario praecedentes, tunc duplicis sesquiquartae proportionis forma texetur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 11:1)
Multiplex vero superpartiens est, quotiens numerus ad numerum comparatus habet in se alium numerum totum plus quam semel et eius vel duas vel tres vel quotlibet plures particulas secundum numeri superpartientis figuram.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:1)
Vocabunturque hi secundum proprias partes duplex superbipartiens, vel duplex supertripartiens, vel duplex superquadripartiens, et rursus triplex superbipartiens et triplex supertripartiens et triplex superquadripartiens et similiter, ut, viij ad iij comparati faciunt duplicem superbipartientem, et xvj ad vj et omnes, quicunque ab viij incipientes octonario sese numero transgrediuntur, comparati ad eos, qui a tribus inchoantes ternaria sese quantitate praetereunt.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:4)
Quod enim in unis tribus terminus evenit, idem contingit in ceteris.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:6)
Praecepta autem tria haec sunt, ut primum numerum primo facias parem, secundum vero primo et secundo, tertium primo, secundis duobus et tertio.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:12)
Iaceant igitur tres termini aequales.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:14)
Fac rursus idem de duplicibus, ut sit primus primo aequalis, id est uni, secundus primo et secundo, id est uni et duobus, qui sunt tres, tertius primo, id est uni, duobus secundis, id est iiij, et tertio, id est iiij, qui simul viiij fiunt, et venit haec formula.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 6:2)

SEARCH

MENU NAVIGATION