라틴어 문장 검색

Si in figura quavis AacE rectis Aa, AE, & curva acE comprehensa, inscribantur parallelogramma quotcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:1)
figurae lateri Aa parallelis contenta;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:5)
dico quod ultimae rationes, quas habent ad se invicem figura inscripta AKbLcMdD, circumscripta AalbmcndoE, & curvilinea AabcdE, sunt rationes aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:8)
Nam figurae inscriptae & circumscriptae differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob aequales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:1)
Hinc summa ultima parallelogrammorum evanescentium coincidit omni ex parte cum figura curvilinea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 11:2)
Et multo magis figura rectilinea, quae chordis evanescentium arcuum ab, bc, cd, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 12:2)
comprehenditur, coincidit ultimo cum figura curvilinea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 12:3)
Ut & figura rectilinea quae tangentibus eorundem arcuum circumscribitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 13:2)
Et propterea hae figurae ultimae (quoad perimetros acE,) non sunt rectilineae, sed rectilinearum limites curvilinei.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 14:2)
Si in duabus figuris AacE, PprT, inscribantur (ut supra) duae parallelogrammorum series, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 16:1)
idem amborum numerus, & ubi latitudines in infinitum diminuitur, rationes ultimae parallelogrammorum in una figura ad parallelogramma in altera, singulorum ad singula, sint eaedem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 16:2)
dico quod figurae duae AacE, PprT, sunt ad invicem in eadem illa ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 16:3)
Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit summa omnium ad summam omnium, & ita figura ad figuram;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 18:1)
existente nimirum figura priore (per Lemma III.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 18:2)
) ad summam priorem, & posteriore figura ad summam posteriorem in ratione aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 18:3)

SEARCH

MENU NAVIGATION