라틴어 문장 검색

constructa & demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D, ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiae illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:3)
Supra arcus fit sepes continuata pedes quatuor alta ex opere itidem lignario, et haec supra sit turricula in summitate arcus cuiusque extructa, cuius interior capacitas sufficiat avicularum caveae excipiendae.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XLIV. [ = English XLVI] DE HORTIS 4:13)
Tandem ducendum erit corpus A in chordam arcus TA (quae velocitatem ejus exhibet) ut habeatur motus ejus in loco A proxime ante reflexionem, deinde in chordam arcus tA ut habeatur motus ejus in loco A proxime post reflexionem.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:20)
Et cum velocitates maximae in praedictis sex Casibus, sint ut arcuum dimidiorum 1-7/8, 3¾, 7½, 15, 30, 60 chordae, atque adeo ut arcus ipsi quamproxime, hoc est ut numeri ½, 1, 2, 4, 8, 16:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 79:2)
Hinc si corpus T filo rectilineo AT a centro A pendens, describat arcum circularem STRQ, & interea urgeatur secundum lineas parallelas deorsum a vi aliqua, quae sit ad vim uniformem gravitatis, ut arcus TR ad ejus sinum TN:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 46:2)
Ergo si pendulum describeret arcum totum 124-3/31 digitorum, & longitudo ejus inter punctum suspensionis & centrum oscillationis esset 126 digitorum, differentia arcuum descensu & subsequente ascensu descriptorum foret 1,509 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:15)
Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum velocitate quam habet in altitudine SP (per Lemma novissimum) describet chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici chordam AC in dimidiata ratione unius ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:1)
vicissim ascensus perpendiculorum de loco infimo R, per eosdem arcus Trochoidales motu retrogrado facti, retardentur in locis singulis a viribus iisdem a quibus descensus accelerabantur, patet velocitates ascensuum ac descensuum per eosdem arcus factorum aequales esse, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:15)
Si recta aB aequalis sit Cycloidis arcui quem corpus oscillando describit, & ad singula ejus puncta D erigantur perpendicula DK, quae sint ad longitudinem Penduli ut resistentia corporis in arcus punctis correspondentibus ad vim gravitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 40:1)
ex demonstratione superioris Propositionis, tempora quibus arcus quivis similes PQ & pq describuntur, sunt in dimidiata ratione distantiarum CP & SP vel sp, hoc est, in dimidiata ratione corporis S ad summam corporum S + P. Et componendo, summae temporum quibus arcus omnes similes PQ & pq describuntur, hoc est tempora tota quibus figurae totae similes describuntur, sunt in eadem dimidiata ratione. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 16:2)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)

SEARCH

MENU NAVIGATION