라틴어 문장 검색

Similiter autem licebit et aliarum formarum, quae pluribus angulis continentur quantitates adscribere.
(보이티우스, De Arithmetica, Liber secundus, Descriptio figuratorum numerorum in ordine 1:1)
Ac de solidis quidem, quae pyramidis formam obtinent, aequaliter crescentibus et a propria velut radice multiangula figura progredientibus dictum est. Est alia rursus quaedam corporum solidorum ordinabilis compositio, eorum qui dicuntur cybi vel asseres vel laterculi vel cunei vel spherae vel parallelepipeda, quae sunt, quotiens superficies contra se sunt, et ductae in infinitum nunquam concurrent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:1)
angulos vero viij, quorum singulus sub tribus eiusmodi continetur, quales priores fuere tetragoni, unde cybus ipse productus est. Ergo ex naturaliter profuso numero qui in subiecta forma descripti sunt subiecti tetragoni nascuntur, et ex his tetragonis qui subnotati sunt cybi provehuntur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:18)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Huiusmodi vero formas quales sunt, quae vocantur a Graecis ετερομηκεις, nos dicere possumus parte altera longiores.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:1)
Huic si copules septem, sedecim quadrati forma se suggerit.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:9)
Quod si continuatim quis faciat, cunctos huiusmodi numeros in conpetenti ordine procreatos videbit, quam descriptionem scilicet inferior forma demonstrat.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:14)
Hi autem numeri idcirco cyclici vel spherici vocantur, quod sphera vel circulus in proprii semper principii reversione formantur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:8)
Ex v igitur et vj paucas huiusmodi formas subscripsimus.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:14)
Qui autem de natura rerum propinquis investigantes rationibus, quique in matheseos disputatione versati, quid in quaque re esset proprium, subtilissime peritissimeque ediderunt, hi rerum omnium naturas in gemina dividentes hac speculatione distribuunt.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:2)
Dicunt enim omnes omnium rerum substantias constare ex ea, quae propriae suaeque semper habitudinis est nec ullo modo permutatur, et ea scilicet natura, quae variabilis motus est sortita substantiam.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:3)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
Cur autem parte altera longiores numeri dicantur, supra iam dictum est. Quadrati vero quoniam aequam latitudinem longitudini gerunt, propriae longitudinis vel eiusdem latitudinis aptissime vocabuntur, ut bis duo, ter tres, quater quattuor et ceteri.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:13)
Omne autem, quicquid in propria natura substantiaque est inmobile, terminatum definitumque est, quippe quod nulla variatione mutetur, nunquam esse desinat, nunquam possit esse, quod non fuit.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:1)

SEARCH

MENU NAVIGATION