라틴어 문장 검색

Igitur si fluido & cylindro exteriore quiescentibus, revolvatur cylindrus interior uniformiter, communicabitur motus circularis fluido, & paulatim per totum fluidum propagabitur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 11:2)
Vis Cochleae ad premendum corpus est ad vim manus manubrium circumagentis, ut circularis velocitas Manubrii ea in parte ubi a manu urgetur, ad velocitatem progressivam Cochleae versus corpus pressum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:9)
Exponantur tempora per lineas AD, AE, & velocitates genitae per ordinatas DB, EC, & spatia his velocitatibus descripta erunt ut areae ABD, ACE his ordinatis descriptae, hoc est ipso motus initio (per Lemma IX) in duplicata ratione temporum AD, AE. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 44:1)
Igitur velocitas maxima, quam corpus cadendo potest acquirere, est ad velocitatem dato quovis tempore acquisitam, ut vis data gravitatis qua perpetuo urgetur, ad excessum vis hujus supra vim qua in fine temporis illius resistitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 20:2)
Nam quoniam quadrato velocitatis proportionalis est resistentia Medii, & resistentiae proportionale est decrementum velocitatis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:1)
datur & spatium quod semisse velocitatis illius dato tempore describi potest, & tempus quo corpus velocitatem illam in spatio non resistente cadendo posset acquirere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:7)
Sed pressio qua quadratum DB urget Fluidum inclusum, est ad pressionem qua quadratum DP urget idem Fluidum, ut quadratum DB ad quadratum DP, hoc est ut AB quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 43:8)
Sed velocitates reciproce sunt ut tempora, atque adeo tempora directe & velocitates reciproce sunt ut quadrata temporum, & propterea quantitates materiae sunt ut vires motrices & quadrata temporum, id est ut pondera & quadrata temporum. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 3:8)
cumque velocitatum incrementa vel decrementa sint ut hae differentiae vel summae, velocitates semper erunt ut arcus toti:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 18:4)
Ad df demittatur perpendiculum Fm, & velocitatis DF decrementum fg a resistentia DK genitum, erit ad velocitatis ejusdem incrementum fma vi CD genitum, ut vis generans DK ad vim generantem CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:13)
adeoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:4)
Quare in Casu columnae quartae ubi velocitas erat 1, resistentia tota est ad partem suam quadrato velocitatis proportionalem, ut 21-2/7 + 64-3/14 seu 85½, ad 64-3/14;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:4)
Unde si toti cylindrorum & fluidi Systemati auferatur motus omnis angularis cylindri exterioris, habebitur motus fluidi in cylindro quiescente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 10:2)
Velocitas autem Lunae in Syzygiis A & B est ad ipsius velocitatem in Quadraturis C & D ut CS, ad AS & momentum areae quam Luna radio ad Terram ducto describit in Syzygiis ad momentum ejusdem areae in Quadraturis conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:16)
D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetae, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 45:3)

SEARCH

MENU NAVIGATION