라틴어 문장 검색

Et Plato quidem in Timaeo eiusdem naturae et alterius nominat, quicquid in mundo est, atque aliud in sua natura permanere putat individuum inconiunctumque et rerum omnium primum, alterum divisibile et nunquam in proprii statu ordinis permanens.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:10)
In sesqualtera vero duorum est differentia, in sesquitertia trium, in sesquiquarta quattuor et deinceps secundum superparticulares formas numerorum, quod ad differentias adtinet, uno tantum crescit adiectio numerum explicans naturalem.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:2)
Sin vero secundum tetragonum primo parte altera longiori compares et tertium secundo et quartum tertio et quintum quarto, easdem rursus proportiones effici pernotabis, quas in superiore forma descripsimus, sed hic differentiae ab unitate non inchoant, sed a binario numero in infinitum per eosdem calculos progrediuntur, eritque secundus primis duplu, tertius secundi sesqualter, quartus tertii sesquitertius, secundum eandem convenientiam, quae superius demonstrata est.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 8:1)
Sin vero inter secundum tertiumque tetragonum secundum parte altera longiorem ponas, sesqualterae comparationis ad utrosque forma componitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 21:3)
Illud quoque non oportet minore admiratione suspicere, quod secundum proprias naturas, ubi altrinsecus duo tetragoni stant et unus parte altera longior in medio ponitur, tetragonus, qui nascitur, ille semper ab inpari procreatur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:1)
Omnis vero tetragonus, si ei proprium latus addatur, vel eodem rursus dematur, parte altera longior fit. Namque iiij tetragono si quis duo iungat vel duo detrahat, vj addendo perficiet et ij detrahendo.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:1)
Constat igitur primo quidem loco unitatem propriae inmutabilisque substantiae eiusdemque naturae, dualitatem vero primam alteritatis mutationisque esse principium;
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:1)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
Quartum vero proprium huiusmodi dispositionis notatur, quod antiquiores quoque habuere notissimum, quod in hac proportionalitate vel medietate in minoribus terminis maiores proportiones, in maioribus minores comparationes necesse est inveniri.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:1)
Habet autem proprium huiusmodi medietas, quod in omni dispositione secundum hanc proportionalitatem terminorum differentiae in eadem proportione contra se sunt, qua fuerint ipsi termini, quorum sunt ipsae differentiae.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 5:1)
Est etiam aliud proprium, quod omnis ad minorem maior terminus comparatus ipsum minorem retinet differentiam.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:2)
unde formae solidae tria intervalla dicuntur habere.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:6)
ita quoque datis duobus numeris nunc quidem arithmeticam nunc vero geometricam nunc autem armonicam medietatem experiamur inserere, ut rectum propriumque medietatis nomen sit, quod manentibus extremitatibus huc atque illuc ferri permutarique videatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:2)
Est autem propriam huius medietatis, quoniam quod continetur sub maximo termino et medio duplum est eo, quod continetur sub medio atque parvissimo.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:10)
Est autem proprium in hac quoque dispositione, quod illud, quod continetur sub maiore termino et medietate duplum est eo, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:6)

SEARCH

MENU NAVIGATION