라틴어 문장 검색

hic vero contrarie, quemadmodum minores ad se termini sunt, sic minorum differentia terminorum ad maiorum differentiam comparatur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:5)
Sic in regionibus ubi gravitas acceleratrix duplo minor est, pondus corporis duplo vel triplo minoris erit quadruplo vel sextuplo minus.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 26:7)
Lineae autem rectae, quae sunt in data ratione ad invicem, & aequali motu angulari circum terminos suos feruntur, figuras circum eosdem terminos (in planis quae una cum his terminis vel quiescunt vel motu quovis non angulari moventur) describunt omnino similes.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 4:4)
Et habet quidem, quod utrique non habent, quod cum in uno solus maior terminus divideretur, in alio vero solus maior terminus divisionem recipit, neque minor solus terminus a divisione seiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:8)
Quare in his neque eadem proportio terminorum est, neque sunt eaedem differentiae, est autem quemadmodum maximus terminus ad parvissimum terminum, sic differentia maximi et medii ad differentiam medii atque postremi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:3)
j ij iij iiij v vj vij viij viiij x. In hac enim naturalis numeri dispositione, si quis continuatim differentias terminorum curet aspicere, secundum arithmeticam medietatem aequa terminorum inter se discrepantia est;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:3)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
Quarta vero, quae in ordine decima est, consideratur in tribus terminis, cum tali proportione medius terminus ad parvissimum comparatur, quali extremorum differentia contra maiorum terminorum differentiam proportione coniungitur, ut sunt iij v viij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:12)
Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)
Vel si eam proportionem, quam inter se dati termini custodiunt, dividas et id quod relinquitur medium terminum ponas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:14)
Si autem inpares terminos ponamus, id est summas -- idem enim terminos quod summas nomino -- secundum inparis naturam potest una medietas inveniri atque ipsa una sibi est responsura.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:1)
et minorum terminorum proportio maior est illa comparatione, quae inter maiores terminos continetur;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:11)
hujus termino in quo O duarum est dimensionum, id est termino {mm - mn} ÷ 2nn O^2 A^{(m - 2n)÷n} vim proportionalem esse suppono.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:2)
Quo tempore vapor à capite ad terminum caudae ascendit, cognosci fere potest ducendo rectam à termino caudae ad Solem, & notando locum ubi recta illa Trajectoriam secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 49:1)
utrum illa corpora quae sunt termini motus disponant vel alterent corpora media, ut per successionem et tactum verum labatur virtus a termino ad terminum, et interim subsistat in corpore medio;
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 369:9)

SEARCH

MENU NAVIGATION