라틴어 문장 검색

& pone tempus revolutionis hujus esse ad summam hujus temporis & temporis revolutionis globi, ut quadratum semidiametri vasis ad quadratum semidiametri globi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 27:4)
esset autem Ellipseos semidiameter maxima CS ad semidiametrum minimam SA ut 69-11/12 ad 68-11/12:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:3)
foret Tangens anguli CSP ad Tangentem anguli motus medii à quadratura C computati, ut Ellipseos semidiameter SA ad ejusdem semidiametrum SC seu 68-11/12 ad 69-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:4)
patet quod motus perpetuò transfertur à centro ad circumferentiam Vorticis, & per infinitatem circumferentiae absorbetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:3)
) ut latus quadratum rectanguli BEC contenti sub semidiametro Rotae, qua Cyclois descripta fuit, & differentia inter semidiametrum illam & semidiametrum globi. Q. E. I. Est & idem tempus (per Corol. Prop. L.) in dimidiata ratione longitudinis fili AR. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:13)
quibus in aequatione scriptis, & aequatione prodeunte resolutâ, obtinetur x aequalis 0,0072036, & inde semidiameter CS fit 1,0072, & semidiameter AS 0,9928, qui numeri sunt ut 69-11/12 & 68-11/12 quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 42:12)
Ponamus primo quod corpus ascendit, centroque D & semidiametro quovis DB describatur circuli quadrans BETF, & per semidiametri DB terminum B agatur infinita BAP, semidiametro DF parallela.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:2)
Quare cum sit LN ad KH ut IM ad radium OP, & EG ad BC ut HK ad circumferentiam PHShP, & vicissim EG ad HK ut BC ad circumferentiam PHShP, id est (si circumferentia dicatur Z) ut OP × BC ÷ Z ad OP, & ex aequo LN ad EG ut IM ad OP × BC ÷ Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:8)
Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
Gyretur corpus in circumferentia circuli, requiritur lex vis centripetae tendentis ad punctum aliquod in circumferentia datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 49:1)
Vis qua Luna in orbe suo circa Terram quiescentem, ad distantiam PS semidiametrorum terrestrium 60½ revolvi posset, est ad vim, qua eodem tempore ad distantiam semidiametrorum 60 revolvi posset, ut 60½ ad 60;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 25:12)
In circumferentia PHSh capiantur aequales arcus HI, IK vel hi, ik, eam habentes rationem ad circumferentiam totam quam habent aequales rectae EF, FG ad pulsuum intervallum totum BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:1)
quoniam earum perimetri sunt ut semidiametri globorum & vires in analogis perimetrorum locis sunt ut distantiae locorum a communi globorum centro, hoc est ut globorum semidiametri, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:2)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)

SEARCH

MENU NAVIGATION