라틴어 문장 검색

Eadem omnia, quae superius de motu corporum circa umbilicos Conicarum Sectionum demonstrata sunt, obtinent ubi Sphaera attrahens, formae & conditionis cujusvis jam descriptae, locatur in umbilico.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 44:2)
de motu corporum circa centra Conicarum Sectionum demonstrata sunt, valent ubi attractiones omnes fiunt vi Corporum Sphaericorum, conditionis jam descriptae, suntq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 58:3)
Casu ut corpora gyrentur in Conicis Sectionibus, & componentes corporum Sphaericorum vires centripetas eadem lege in recessu a centro decrescentes vel crescentes cum seipsis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 60:4)
in superficie conica sitas exercita, ut haec ipsa superficiei pars annularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:5)
Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, aequetur semper longitudini PD, quae ducitur ad punctum illud D, in quo applicata ista Sphaeroidem secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:3)
A Sphaeroidis verticibus A, B ad ejus axem AB erigantur perpendicula AK, BM ipsis AP, BP aequalia respective, & propterea Sectioni Conicae occurrentia in K & M;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:4)
AEquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:14)
Hyperbola Conica mediocrem rationem tenet, estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 99:4)
Velocitas autem in G ea erit quacum Projectile pergeret, in spatio non resistente, in Parabola Conica, verticem G, diametrum VG deorsum productam, & latus rectum [sqrt]{2TGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:6)
Sit PQRr Spiralis quae secet radios omnes SP, SQ, SR, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:1)
& ad Spiralem erectis perpendiculis PO, QO concurrentibus in O, jungatur SO.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:4)
Ergo circulus qui transit per puncta O, S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 4:2)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:2)
Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii in P erit ut 1 ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:24)
In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:25)

SEARCH

MENU NAVIGATION